Suppr超能文献

一种用于求解变分不等式及相关优化问题的交替递归神经网络。

An alternative recurrent neural network for solving variational inequalities and related optimization problems.

作者信息

Hu Xiaolin, Zhang Bo

机构信息

State Key Laboratory of Intelligent Technology & Systems, TNList, and Department of Computer Science & Technology, Tsinghua University, Beijing, China.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2009 Dec;39(6):1640-5. doi: 10.1109/TSMCB.2009.2025700. Epub 2009 Aug 4.

Abstract

There exist many recurrent neural networks for solving optimization-related problems. In this paper, we present a method for deriving such networks from existing ones by changing connections between computing blocks. Although the dynamic systems may become much different, some distinguished properties may be retained. One example is discussed to solve variational inequalities and related optimization problems with mixed linear and nonlinear constraints. A new network is obtained from two classical models by this means, and its performance is comparable to its predecessors. Thus, an alternative choice for circuits implementation is offered to accomplish such computing tasks.

摘要

存在许多用于解决与优化相关问题的递归神经网络。在本文中,我们提出了一种通过改变计算块之间的连接从现有网络中推导此类网络的方法。尽管动态系统可能会变得大不相同,但一些显著特性可能会保留下来。讨论了一个用于解决具有混合线性和非线性约束的变分不等式及相关优化问题的例子。通过这种方式从两个经典模型中获得了一个新网络,其性能与它的前身相当。因此,为完成此类计算任务提供了一种电路实现的替代选择。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验