Suppr超能文献

基于投影算子的递归神经网络求解扩展广义变分不等式

A recurrent neural network based on projection operator for extended general variational inequalities.

作者信息

Liu Qingshan, Cao Jinde

机构信息

School of Automation, Southeast University, Nanjing 210096, China.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2010 Jun;40(3):928-38. doi: 10.1109/TSMCB.2009.2033565. Epub 2009 Nov 20.

Abstract

Based on the projection operator, a recurrent neural network is proposed for solving extended general variational inequalities (EGVIs). Sufficient conditions are provided to ensure the global convergence of the proposed neural network based on Lyapunov methods. Compared with the existing neural networks for variational inequalities, the proposed neural network is a modified version of the general projection neural network existing in the literature and capable of solving the EGVI problems. In addition, simulation results on numerical examples show the effectiveness and performance of the proposed neural network.

摘要

基于投影算子,提出了一种用于求解扩展广义变分不等式(EGVIs)的递归神经网络。基于李雅普诺夫方法提供了充分条件,以确保所提出神经网络的全局收敛性。与现有的用于变分不等式的神经网络相比,所提出的神经网络是文献中存在的一般投影神经网络的改进版本,能够解决EGVI问题。此外,数值例子的仿真结果表明了所提出神经网络的有效性和性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验