Suppr超能文献

通过联合计算模拟和实验方法评估电刺激对分离的啮齿动物胃平滑肌细胞的影响。

Effects of electrical stimulation on isolated rodent gastric smooth muscle cells evaluated via a joint computational simulation and experimental approach.

机构信息

Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.

出版信息

Am J Physiol Gastrointest Liver Physiol. 2009 Oct;297(4):G672-80. doi: 10.1152/ajpgi.00149.2009. Epub 2009 Aug 6.

Abstract

Gastric electrical stimulation (GES) involves the delivery of electrical impulses to the stomach for therapeutic purposes. New GES protocols are needed that are optimized for improved motility outcomes and energy efficiency. In this study, a biophysically based smooth muscle cell (SMC) model was modified on the basis of experimental data and employed in conjunction with experimental studies to define the effects of a large range of GES protocols on individual SMCs. For the validation studies, rat gastric SMCs were isolated and subjected to patch-clamp analysis during stimulation. Experimental results were in satisfactory agreement with simulation results. The results define the effects of a wide range of GES parameters (pulse width, amplitude, and pulse-train frequency) on isolated SMCs. The minimum pulse width required to invoke a supramechanical threshold response from SMCs (defined at -30 mV) was 65 ms (at 250-pA amplitude). The minimum amplitude required to invoke this threshold was 75 pA (at 1,000-ms pulse width). The amplitude of the invoked response beyond this threshold was proportional to the stimulation amplitude. A high-frequency train of stimuli (40 Hz; 10 ms, 150 pA) could invoke and maintain the SMC plateau phase while requiring 60% less power and accruing approximately 30% less intracellular Ca(2+) concentration during the plateau phase than a comparable single-pulse protocol could in a demonstrated example. Validated computational simulations are an effective strategy for efficiently identifying effective minimum-energy GES protocols, and pulse-train protocols may also help to reduce the power consumption of future GES devices.

摘要

胃电刺激(GES)涉及为治疗目的向胃输送电脉冲。需要新的 GES 协议,这些协议经过优化,可实现更好的运动学效果和更高的能量效率。在这项研究中,基于实验数据对平滑肌细胞(SMC)模型进行了修改,并与实验研究相结合,以确定各种 GES 方案对单个 SMC 的影响。在验证研究中,分离大鼠胃 SMC 并在刺激过程中进行膜片钳分析。实验结果与模拟结果非常吻合。结果定义了广泛的 GES 参数(脉冲宽度、幅度和脉冲串频率)对分离 SMC 的影响。引起 SMC 超机械阈反应的最小脉冲宽度(定义为-30 mV)为 65 ms(在 250-pA 幅度下)。引起此阈值的最小幅度为 75 pA(在 1,000-ms 脉冲宽度下)。超过此阈值的激发响应幅度与刺激幅度成正比。高频率刺激脉冲串(40 Hz;10 ms,150 pA)可以引发并维持 SMC 平台相,同时在平台相期间所需的功率减少 60%,细胞内 Ca(2+)浓度增加约 30%,与可比的单脉冲方案相比,在一个演示示例中。验证后的计算模拟是一种有效策略,可有效确定有效最小能量 GES 方案,并且脉冲串协议还可能有助于降低未来 GES 设备的功耗。

相似文献

1
Effects of electrical stimulation on isolated rodent gastric smooth muscle cells evaluated via a joint computational simulation and experimental approach.
Am J Physiol Gastrointest Liver Physiol. 2009 Oct;297(4):G672-80. doi: 10.1152/ajpgi.00149.2009. Epub 2009 Aug 6.
2
Cellular effects of gastric electrical stimulation on antral smooth muscle cells in rats.
Am J Physiol Regul Integr Comp Physiol. 2010 Jun;298(6):R1580-7. doi: 10.1152/ajpregu.00024.2010. Epub 2010 Mar 31.
4
Direct optogenetic stimulation of smooth muscle cells to control gastric contractility.
Theranostics. 2021 Mar 20;11(11):5569-5584. doi: 10.7150/thno.53883. eCollection 2021.
5
The effect of gastric electrical stimulation on canine gastric slow waves.
Am J Physiol Gastrointest Liver Physiol. 2003 Jun;284(6):G956-62. doi: 10.1152/ajpgi.00477.2002. Epub 2003 Feb 12.
6
Effects of dual pulse gastric electrical stimulation on gastric tone and compliance in dogs.
Dig Liver Dis. 2009 Apr;41(4):277-82. doi: 10.1016/j.dld.2008.07.312. Epub 2008 Sep 16.
7
Gastric electrical stimulation optimized to inhibit gastric motility reduces food intake in dogs.
Obes Surg. 2015 Jun;25(6):1047-55. doi: 10.1007/s11695-014-1491-8.
8
Gastric electrical stimulation for obesity: the need for a new device using wider pulses.
Obesity (Silver Spring). 2009 Mar;17(3):474-80. doi: 10.1038/oby.2008.543. Epub 2008 Dec 4.
10
Gastric electrical stimulation modulates neuronal activity in nucleus tractus solitarii in rats.
Auton Neurosci. 2005 Apr 29;119(1):1-8. doi: 10.1016/j.autneu.2005.01.007.

引用本文的文献

1
Accelerated Electron Ionization-Induced Changes in the Myenteric Plexus of the Rat Stomach.
Int J Mol Sci. 2024 Jun 20;25(12):6807. doi: 10.3390/ijms25126807.
2
Design of Bio-Optical Transceiver for In Vivo Biomedical Sensor Applications.
Sensors (Basel). 2024 Apr 18;24(8):2584. doi: 10.3390/s24082584.
3
An efficient online peak detection algorithm for synchronized intestinal electrical stimulation and its application for treating diabetes.
Med Biol Eng Comput. 2023 Sep;61(9):2317-2327. doi: 10.1007/s11517-023-02832-z. Epub 2023 Apr 15.
4
Engaging biological oscillators through second messenger pathways permits emergence of a robust gastric slow-wave during peristalsis.
PLoS Comput Biol. 2021 Dec 6;17(12):e1009644. doi: 10.1371/journal.pcbi.1009644. eCollection 2021 Dec.
7
Stomach region stimulated determines effects on duodenal motility in rats.
Am J Physiol Regul Integr Comp Physiol. 2021 Mar 1;320(3):R331-R341. doi: 10.1152/ajpregu.00111.2020. Epub 2021 Jan 20.
8
Long-Pulse Gastric Electrical Stimulation Repairs Interstitial Cells of Cajal and Smooth Muscle Cells in the Gastric Antrum of Diabetic Rats.
Gastroenterol Res Pract. 2018 Nov 13;2018:6309157. doi: 10.1155/2018/6309157. eCollection 2018.
9
Computational motility models of neurogastroenterology and neuromodulation.
Brain Res. 2018 Aug 15;1693(Pt B):174-179. doi: 10.1016/j.brainres.2018.02.038.
10
Nonparametric Model of Smooth Muscle Force Production During Electrical Stimulation.
J Comput Biol. 2017 Mar;24(3):229-237. doi: 10.1089/cmb.2016.0070. Epub 2016 Aug 5.

本文引用的文献

1
Gastrointestinal system.
Wiley Interdiscip Rev Syst Biol Med. 2010 Jan-Feb;2(1):65-79. doi: 10.1002/wsbm.19.
2
A tissue framework for simulating the effects of gastric electrical stimulation and in vivo validation.
IEEE Trans Biomed Eng. 2009 Dec;56(12):2755-61. doi: 10.1109/TBME.2009.2027690. Epub 2009 Jul 28.
3
High-frequency gastric electrical stimulation for the treatment of gastroparesis: a meta-analysis.
World J Surg. 2009 Aug;33(8):1693-701. doi: 10.1007/s00268-009-0096-1.
4
A novel laparoscopic device for measuring gastrointestinal slow-wave activity.
Surg Endosc. 2009 Dec;23(12):2842-8. doi: 10.1007/s00464-009-0515-2. Epub 2009 May 23.
6
Gastric electrical stimulation for obesity: the need for a new device using wider pulses.
Obesity (Silver Spring). 2009 Mar;17(3):474-80. doi: 10.1038/oby.2008.543. Epub 2008 Dec 4.
7
Gut peristalsis is governed by a multitude of cooperating mechanisms.
Am J Physiol Gastrointest Liver Physiol. 2009 Jan;296(1):G1-8. doi: 10.1152/ajpgi.90380.2008. Epub 2008 Nov 6.
8
Regulation of smooth muscle excitation and contraction.
Neurogastroenterol Motil. 2008 May;20 Suppl 1(Suppl 1):39-53. doi: 10.1111/j.1365-2982.2008.01108.x.
9
Implantable gastric electrical stimulation: ready for prime time?
Gastroenterology. 2008 Mar;134(3):665-7. doi: 10.1053/j.gastro.2008.01.068.
10
A quantitative model of gastric smooth muscle cellular activation.
Ann Biomed Eng. 2007 Sep;35(9):1595-607. doi: 10.1007/s10439-007-9324-8. Epub 2007 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验