Suppr超能文献

负载型Ru/γ-Al₂O₃催化剂的颗粒尺寸和形状与NH₃分解活性的关联

Correlating particle size and shape of supported Ru/gamma-Al2O3 catalysts with NH3 decomposition activity.

作者信息

Karim Ayman M, Prasad Vinay, Mpourmpakis Giannis, Lonergan William W, Frenkel Anatoly I, Chen Jingguang G, Vlachos Dionisios G

机构信息

Department of Chemical Engineering and Center for Catalytic Science and Technology, University of Delaware, Newark, Delaware 19716, USA.

出版信息

J Am Chem Soc. 2009 Sep 2;131(34):12230-9. doi: 10.1021/ja902587k.

Abstract

While ammonia synthesis and decomposition on Ru are known to be structure-sensitive reactions, the effect of particle shape on controlling the particle size giving maximum turnover frequency (TOF) is not understood. By controlling the catalyst pretreatment conditions, we have varied the particle size and shape of supported Ru/gamma-Al(2)O(3) catalysts. The Ru particle shape was reconstructed by combining microscopy, chemisorption, and extended X-ray absorption fine structure (EXAFS) techniques. We show that the particle shape can change from a round one, for smaller particles, to an elongated, flat one, for larger particles, with suitable pretreatment. Density functional theory calculations suggest that the calcination most likely leads to planar structures. We show for the first time that the number of active (here B(5)) sites is highly dependent on particle shape and increases with particle size up to 7 nm for flat nanoparticles. The maximum TOF (based on total exposed Ru atoms) and number of active (B(5)) sites occur at approximately 7 nm for elongated nanoparticles compared to at approximately 1.8-3 nm for hemispherical nanoparticles. A complete, first-principles based microkinetic model is constructed that can quantitatively describe for the first time the effect of varying particle size and shape on Ru activity and provide further support of the characterization results. In very small nanoparticles, particle size polydispersity (due to the presence of larger particles) appears to be responsible for the observed activity.

摘要

虽然已知钌上的氨合成和分解是结构敏感反应,但颗粒形状对控制给出最大周转频率(TOF)的颗粒尺寸的影响尚不清楚。通过控制催化剂预处理条件,我们改变了负载型Ru/γ-Al₂O₃催化剂的颗粒尺寸和形状。通过结合显微镜、化学吸附和扩展X射线吸收精细结构(EXAFS)技术重建了Ru颗粒形状。我们表明,通过适当的预处理,颗粒形状可以从小颗粒的圆形变为大颗粒的细长扁平形。密度泛函理论计算表明,煅烧最有可能导致平面结构。我们首次表明,活性(此处为B₅)位点的数量高度依赖于颗粒形状,并且对于扁平纳米颗粒,活性位点数量随着颗粒尺寸增加到7nm而增加。与半球形纳米颗粒在约1.8 - 3nm时相比,细长纳米颗粒的最大TOF(基于总暴露的Ru原子)和活性(B₅)位点数量出现在约7nm处。构建了一个完整的、基于第一性原理的微观动力学模型,该模型首次能够定量描述颗粒尺寸和形状变化对Ru活性的影响,并为表征结果提供进一步支持。在非常小的纳米颗粒中,颗粒尺寸多分散性(由于存在较大颗粒)似乎是观察到的活性的原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验