Carlsson Anna, Puig-Molina Anna, Janssens Ton V W
Haldor Topsøe A/S, Nymøllevej 55, DK-2800 Lyngby, Denmark.
J Phys Chem B. 2006 Mar 23;110(11):5286-93. doi: 10.1021/jp0569537.
To apply the knowledge of reaction mechanisms of heterogeneously catalyzed reactions on the atomic scale to supported catalyst systems, a detailed description of the structure of active particles on the atomic scale is required. In this article, a method is developed to construct atomic-scale geometric models for supported active fcc metal nanoparticles, based on a measurement of particle sizes and particle volumes by Scanning Transmission Electron Microscopy (STEM) and the M-M coordination number determined from EXAFS. The method is applied to supported Au/TiO(2), Au/MgAl(2)O(4)(-), and Au/Al(2)O(3) catalysts. These geometric models allow for estimation of geometric properties, such as specific Au surface area, metal-support contact perimeter, metal-support contact surface area, edge length, and number of Au atoms located at the corners of the particles, with an error on the order of 20%. In the three catalysts studied here we find that the Au particles in the Al(2)O(3) supported catalyst are small. The Au particles in the Au/TiO(2) catalyst are smaller in diameter than those for the Au/MgAl(2)O(4), but also thicker. The differences in particle size and shape seem to reflect the differences in the metal-support interface energy in the three catalyst systems.
为了将多相催化反应的反应机理知识在原子尺度上应用于负载型催化剂体系,需要对活性粒子的结构进行原子尺度的详细描述。在本文中,基于通过扫描透射电子显微镜(STEM)测量的粒径和颗粒体积以及由扩展X射线吸收精细结构(EXAFS)确定的M-M配位数,开发了一种构建负载型活性面心立方金属纳米颗粒原子尺度几何模型的方法。该方法应用于负载型Au/TiO(2)、Au/MgAl(2)O(4)(-)和Au/Al(2)O(3)催化剂。这些几何模型允许估计几何性质,如特定的金表面积、金属-载体接触周长、金属-载体接触表面积、边长以及位于颗粒角落的金原子数,误差在20%左右。在这里研究的三种催化剂中,我们发现Al(2)O(3)负载型催化剂中的金颗粒较小。Au/TiO(2)催化剂中的金颗粒直径比Au/MgAl(2)O(4)中的小,但也更厚。粒径和形状的差异似乎反映了三种催化剂体系中金属-载体界面能的差异。