Ponikvar Žiga, Sedminek Anja, Teržan Janvit, Skubic Luka, Lavrič Žan, Huš Matej, Grilc Miha, Likozar Blaž, Makovec Darko, Gyergyek Sašo
Department for Synthesis of Materials, Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia.
Faculty of Chemistry and Chemical Technology, University of Maribor, Smetanova 17, 2000, Maribor, Slovenia.
ChemSusChem. 2025 Apr 14;18(8):e202401970. doi: 10.1002/cssc.202401970. Epub 2024 Dec 17.
Storing and transporting pressurized or liquid hydrogen is expensive and hazardous. As a result, safer methods, such as chemical storage in ammonia, are becoming increasingly important. However, the instantaneous start of a conventionally heated decomposition reactor is challenging. Here we report on the electrified and dynamically responsive decomposition of ammonia as a means of releasing on-demand chemically bonded hydrogen based on the rapid magnetic heating of a well-designed Ru-based nanocomposite catalyst. Under relatively mild conditions (400 °C, 1 bar) a rapid decomposition rate of 5.33 mol g h was achieved. Experimental observations under non-isothermal, dynamic conditions coupled with modelling at the level of density functional theory and micro-kinetic modeling confirmed the minute-scale response of the H release. The rapid response of our catalytic system would, at least in principle, enable the utilization of intermittent, renewable electricity and a tunable H/NH ratio in the reactor's effluent.
储存和运输加压氢气或液态氢既昂贵又危险。因此,更安全的方法,如氨中的化学储存,正变得越来越重要。然而,传统加热的分解反应器的瞬间启动具有挑战性。在此,我们报告了氨的电驱动动态响应分解,这是一种基于精心设计的钌基纳米复合催化剂的快速磁加热来按需释放化学键合氢的方法。在相对温和的条件下(400°C,1巴),实现了5.33摩尔·克⁻¹·小时⁻¹的快速分解速率。非等温动态条件下的实验观察结果,结合密度泛函理论水平的建模和微观动力学建模,证实了氢释放的分钟级响应。我们催化系统的快速响应至少在原则上能够利用间歇性的可再生电力,并使反应器流出物中的氢/氨比可调。