Suppr超能文献

恶性疟原虫乙二醛酶II:Theorell-Chance产物抑制模式、通过精氨酸(257)/赖氨酸(260)进行的限速底物结合以及酸碱催化的揭示

Plasmodium falciparum glyoxalase II: Theorell-Chance product inhibition patterns, rate-limiting substrate binding via Arg(257)/Lys(260), and unmasking of acid-base catalysis.

作者信息

Urscher Miriam, Deponte Marcel

机构信息

Butenandt Institute for Physiological Chemistry, Ludwig Maximilians University, D-81377 Munich, Germany.

出版信息

Biol Chem. 2009 Nov;390(11):1171-83. doi: 10.1515/BC.2009.127.

Abstract

Glyoxalase II (GloII) is a ubiquitous thioester hydrolase catalyzing the last step of the glutathione-dependent conversion of 2-oxoaldehydes to 2-hydroxycarboxylic acids. Here, we present a detailed structure-function analysis of cGloII from the malaria parasite Plasmodium falciparum. The activity of the enzyme was salt-sensitive and pH-log k(cat) and pH-log k(cat)/K(m) profiles revealed acid-base catalysis. An acidic pK(a)(app) value of approximately 6 probably reflects hydroxide formation at the metal center. The glutathione-binding site was analyzed by site-directed mutagenesis. Substitution of residue Arg(154) caused a 2.5-fold increase of K(m)(app), whereas replacements of Arg(257) or Lys(260) were far more detrimental. Although the glutathione-binding site and the catalytic center are separated, six of six single mutations at the substrate-binding site decreased the k(cat)(app) value. Furthermore, product inhibition studies support a Theorell-Chance Bi Bi mechanism with glutathione as the second product. We conclude that the substrate is predominantly bound via ionic interactions with the conserved residues Arg(257) and Lys(260), and that correct substrate binding is a pH- and salt-dependent rate-limiting step for catalysis. The presented mechanistic model is presumably also valid for GloII from many other organisms. Our study could be valuable for drug development strategies and enhances the understanding of the chemistry of binuclear metallohydrolases.

摘要

乙二醛酶II(GloII)是一种普遍存在的硫酯水解酶,催化2-氧代醛通过谷胱甘肽依赖性转化为2-羟基羧酸的最后一步反应。在此,我们展示了来自疟原虫恶性疟原虫的cGloII的详细结构-功能分析。该酶的活性对盐敏感,pH-log k(cat)和pH-log k(cat)/K(m)曲线揭示了酸碱催化作用。约为6的酸性pK(a)(app)值可能反映了金属中心处氢氧化物的形成。通过定点诱变分析了谷胱甘肽结合位点。残基Arg(154)的取代导致K(m)(app)增加了2.5倍,而Arg(257)或Lys(260)的取代则更具危害性。尽管谷胱甘肽结合位点和催化中心是分开的,但底物结合位点的六个单突变中有六个降低了k(cat)(app)值。此外,产物抑制研究支持以谷胱甘肽作为第二种产物的Theorell-Chance双底物双产物机制。我们得出结论,底物主要通过与保守残基Arg(257)和Lys(260)的离子相互作用结合,并且正确的底物结合是催化作用中依赖于pH和盐的限速步骤。所提出的机制模型可能对许多其他生物体的GloII也有效。我们的研究可能对药物开发策略有价值,并增进对双核金属水解酶化学性质的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验