Suppr超能文献

基于 MEM 谱分析预测日本流感流行。

MEM spectral analysis for predicting influenza epidemics in Japan.

机构信息

Department of Hygiene, Sapporo Medical University School of Medicine, S-1, W-17, Chuo-ku, Sapporo 060-8556, Japan.

出版信息

Environ Health Prev Med. 2012 Mar;17(2):98-108. doi: 10.1007/s12199-011-0223-0. Epub 2011 Jun 7.

Abstract

OBJECTIVES

The prediction of influenza epidemics has long been the focus of attention in epidemiology and mathematical biology. In this study, we tested whether time series analysis was useful for predicting the incidence of influenza in Japan.

METHODS

The method of time series analysis we used consists of spectral analysis based on the maximum entropy method (MEM) in the frequency domain and the nonlinear least squares method in the time domain. Using this time series analysis, we analyzed the incidence data of influenza in Japan from January 1948 to December 1998; these data are unique in that they covered the periods of pandemics in Japan in 1957, 1968, and 1977.

RESULTS

On the basis of the MEM spectral analysis, we identified the periodic modes explaining the underlying variations of the incidence data. The optimum least squares fitting (LSF) curve calculated with the periodic modes reproduced the underlying variation of the incidence data. An extension of the LSF curve could be used to predict the incidence of influenza quantitatively.

CONCLUSIONS

Our study suggested that MEM spectral analysis would allow us to model temporal variations of influenza epidemics with multiple periodic modes much more effectively than by using the method of conventional time series analysis, which has been used previously to investigate the behavior of temporal variations in influenza data.

摘要

目的

流感的预测一直是流行病学和数学生物学关注的焦点。本研究旨在检验时间序列分析是否有助于预测日本流感的发病率。

方法

我们使用的时间序列分析方法包括基于最大熵法(MEM)的频域谱分析和时域非线性最小二乘法。利用该时间序列分析,我们分析了 1948 年 1 月至 1998 年 12 月期间日本流感的发病率数据;这些数据的独特之处在于,它们涵盖了日本 1957 年、1968 年和 1977 年的流感大流行时期。

结果

基于 MEM 谱分析,我们确定了解释发病率数据基本变化的周期性模式。利用这些周期性模式计算的最优最小二乘拟合(LSF)曲线再现了发病率数据的基本变化。LSF 曲线的扩展可用于定量预测流感的发病率。

结论

我们的研究表明,MEM 谱分析比以前用于研究流感数据时间变化行为的传统时间序列分析方法更有效地模拟流感流行的时间变化,该方法可以使用多个周期性模式。

相似文献

1
MEM spectral analysis for predicting influenza epidemics in Japan.基于 MEM 谱分析预测日本流感流行。
Environ Health Prev Med. 2012 Mar;17(2):98-108. doi: 10.1007/s12199-011-0223-0. Epub 2011 Jun 7.
2
Time series analysis of incidence data of influenza in Japan.日本流感发病率的时间序列分析。
J Epidemiol. 2011;21(1):21-9. doi: 10.2188/jea.je20090162. Epub 2010 Nov 13.

引用本文的文献

1
Influenza-type epidemic risks by spatio-temporal Gaidai-Yakimov method.采用盖代-亚基莫夫时空方法评估流感样疫情风险。
Dialogues Health. 2023 Oct 27;3:100157. doi: 10.1016/j.dialog.2023.100157. eCollection 2023 Dec.
3
Gaidai reliability method for long-term coronavirus modelling.盖代可靠性方法用于长期冠状病毒建模。
F1000Res. 2023 Nov 21;11:1282. doi: 10.12688/f1000research.125924.2. eCollection 2022.
4
COVID-19 Epidemic Forecast in Brazil.巴西的新冠疫情预测。
Bioinform Biol Insights. 2023 Apr 11;17:11779322231161939. doi: 10.1177/11779322231161939. eCollection 2023.

本文引用的文献

1
Time series analysis of incidence data of influenza in Japan.日本流感发病率的时间序列分析。
J Epidemiol. 2011;21(1):21-9. doi: 10.2188/jea.je20090162. Epub 2010 Nov 13.
7
Stochastic model of an influenza epidemic with drug resistance.具有耐药性的流感流行的随机模型。
J Theor Biol. 2007 Sep 7;248(1):179-93. doi: 10.1016/j.jtbi.2007.05.009. Epub 2007 May 17.
9
Transmissibility of 1918 pandemic influenza.1918年大流行性流感的传播性。
Nature. 2004 Dec 16;432(7019):904-6. doi: 10.1038/nature03063.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验