Suppr超能文献

人类与类人机器人直立姿势控制的比较。

Comparison of human and humanoid robot control of upright stance.

作者信息

Peterka Robert J

机构信息

Biomedical Engineering Division, Oregon Health & Science University, OHSU West Campus, 505 NW 185th Avenue, Beaverton, OR 97006, USA.

出版信息

J Physiol Paris. 2009 Sep-Dec;103(3-5):149-58. doi: 10.1016/j.jphysparis.2009.08.001. Epub 2009 Aug 7.

Abstract

There is considerable recent interest in developing humanoid robots. An important substrate for many motor actions in both humans and biped robots is the ability to maintain a statically or dynamically stable posture. Given the success of the human design, one would expect there are lessons to be learned in formulating a postural control mechanism for robots. In this study we limit ourselves to considering the problem of maintaining upright stance. Human stance control is compared to a suggested method for robot stance control called zero moment point (ZMP) compensation. Results from experimental and modeling studies suggest there are two important subsystems that account for the low- and mid-frequency (DC to approximately 1Hz) dynamic characteristics of human stance control. These subsystems are (1) a "sensory integration" mechanism whereby orientation information from multiple sensory systems encoding body kinematics (i.e. position, velocity) is flexibly combined to provide an overall estimate of body orientation while allowing adjustments (sensory re-weighting) that compensate for changing environmental conditions and (2) an "effort control" mechanism that uses kinetic-related (i.e., force-related) sensory information to reduce the mean deviation of body orientation from upright. Functionally, ZMP compensation is directly analogous to how humans appear to use kinetic feedback to modify the main sensory integration feedback loop controlling body orientation. However, a flexible sensory integration mechanism is missing from robot control leaving the robot vulnerable to instability in conditions where humans are able to maintain stance. We suggest the addition of a simple form of sensory integration to improve robot stance control. We also investigate how the biological constraint of feedback time delay influences the human stance control design. The human system may serve as a guide for improved robot control, but should not be directly copied because the constraints on robot and human control are different.

摘要

最近,人们对开发类人机器人有着浓厚的兴趣。人类和双足机器人许多运动动作的一个重要基础是保持静态或动态稳定姿势的能力。鉴于人类设计的成功,人们期望在为机器人制定姿势控制机制时能学到一些经验教训。在本研究中,我们仅限于考虑保持直立姿势的问题。将人类的姿势控制与一种名为零力矩点(ZMP)补偿的机器人姿势控制建议方法进行了比较。实验和建模研究结果表明,有两个重要的子系统可以解释人类姿势控制的低频和中频(直流到约1Hz)动态特性。这些子系统是:(1)一种“感觉整合”机制,通过该机制,来自多个编码身体运动学(即位置、速度)的感觉系统的方向信息被灵活组合,以提供身体方向的总体估计,同时允许进行调整(感觉重新加权),以补偿不断变化的环境条件;(2)一种“用力控制”机制,该机制使用与动力学相关(即与力相关)的感觉信息来减少身体方向与直立方向的平均偏差。在功能上,ZMP补偿与人类似乎如何利用动力学反馈来修改控制身体方向的主要感觉整合反馈回路直接类似。然而,机器人控制中缺少灵活的感觉整合机制,这使得机器人在人类能够保持姿势的情况下容易出现不稳定。我们建议添加一种简单形式的感觉整合来改善机器人的姿势控制。我们还研究了反馈时间延迟的生物学限制如何影响人类姿势控制设计。人类系统可以作为改进机器人控制的指南,但不应直接照搬,因为机器人和人类控制的限制是不同的。

相似文献

1
Comparison of human and humanoid robot control of upright stance.
J Physiol Paris. 2009 Sep-Dec;103(3-5):149-58. doi: 10.1016/j.jphysparis.2009.08.001. Epub 2009 Aug 7.
2
Vestibular humanoid postural control.
J Physiol Paris. 2009 Sep-Dec;103(3-5):178-94. doi: 10.1016/j.jphysparis.2009.08.002. Epub 2009 Aug 7.
3
Human stance control beyond steady state response and inverted pendulum simplification.
Exp Brain Res. 2008 Mar;185(4):635-53. doi: 10.1007/s00221-007-1189-4. Epub 2007 Nov 20.
4
Biologically-inspired humanoid postural control.
J Physiol Paris. 2009 Sep-Dec;103(3-5):195-210. doi: 10.1016/j.jphysparis.2009.08.003. Epub 2009 Aug 7.
5
Influence of stance width on frontal plane postural dynamics and coordination in human balance control.
J Neurophysiol. 2010 Aug;104(2):1103-18. doi: 10.1152/jn.00916.2009. Epub 2010 Apr 28.
6
Sensory adaptation in human balance control: lessons for biomimetic robotic bipeds.
Neural Netw. 2008 May;21(4):621-7. doi: 10.1016/j.neunet.2008.03.013. Epub 2008 May 14.
7
Modeling sensorimotor control of human upright stance.
Prog Brain Res. 2007;165:283-97. doi: 10.1016/S0079-6123(06)65018-8.
8
Effect of head orientation on postural control during upright stance and forward lean.
Motor Control. 2012 Jan;16(1):81-93. doi: 10.1123/mcj.16.1.81.
9
Dynamic regulation of sensorimotor integration in human postural control.
J Neurophysiol. 2004 Jan;91(1):410-23. doi: 10.1152/jn.00516.2003. Epub 2003 Sep 17.
10
Sensory integration for human balance control.
Handb Clin Neurol. 2018;159:27-42. doi: 10.1016/B978-0-444-63916-5.00002-1.

引用本文的文献

1
Neuromuscular Control Modelling of Human Perturbed Posture Through Piecewise Affine Autoregressive With Exogenous Input Models.
Front Bioeng Biotechnol. 2022 Jan 21;9:804904. doi: 10.3389/fbioe.2021.804904. eCollection 2021.
2
Identification of COM Controller of a Human in Stance Based on Motion Measurement and Phase-Space Analysis.
Front Robot AI. 2022 Jan 4;8:729575. doi: 10.3389/frobt.2021.729575. eCollection 2021.
4
Haptic Cues for Balance: Use of a Cane Provides Immediate Body Stabilization.
Front Neurosci. 2017 Dec 14;11:705. doi: 10.3389/fnins.2017.00705. eCollection 2017.
8
Optimization of muscle activity for task-level goals predicts complex changes in limb forces across biomechanical contexts.
PLoS Comput Biol. 2012;8(4):e1002465. doi: 10.1371/journal.pcbi.1002465. Epub 2012 Apr 12.
9
Stability in a frontal plane model of balance requires coupled changes to postural configuration and neural feedback control.
J Neurophysiol. 2011 Jul;106(1):437-48. doi: 10.1152/jn.00010.2011. Epub 2011 May 4.

本文引用的文献

1
Computational approaches to spatial orientation: from transfer functions to dynamic Bayesian inference.
J Neurophysiol. 2008 Dec;100(6):2981-96. doi: 10.1152/jn.90677.2008. Epub 2008 Oct 8.
2
Sensory adaptation in human balance control: lessons for biomimetic robotic bipeds.
Neural Netw. 2008 May;21(4):621-7. doi: 10.1016/j.neunet.2008.03.013. Epub 2008 May 14.
3
Human stance control beyond steady state response and inverted pendulum simplification.
Exp Brain Res. 2008 Mar;185(4):635-53. doi: 10.1007/s00221-007-1189-4. Epub 2007 Nov 20.
4
Modeling sensorimotor control of human upright stance.
Prog Brain Res. 2007;165:283-97. doi: 10.1016/S0079-6123(06)65018-8.
5
Stimulus-dependent changes in the vestibular contribution to human postural control.
J Neurophysiol. 2006 May;95(5):2733-50. doi: 10.1152/jn.00856.2004. Epub 2006 Feb 8.
7
Multisensory control of human upright stance.
Exp Brain Res. 2006 May;171(2):231-50. doi: 10.1007/s00221-005-0256-y. Epub 2005 Nov 24.
8
Comparison of different methods to identify and quantify balance control.
J Neurosci Methods. 2005 Jun 30;145(1-2):175-203. doi: 10.1016/j.jneumeth.2005.01.003. Epub 2005 Mar 19.
10
Efficient bipedal robots based on passive-dynamic walkers.
Science. 2005 Feb 18;307(5712):1082-5. doi: 10.1126/science.1107799.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验