Suppr超能文献

空间定向的计算方法:从传递函数到动态贝叶斯推理。

Computational approaches to spatial orientation: from transfer functions to dynamic Bayesian inference.

作者信息

MacNeilage Paul R, Ganesan Narayan, Angelaki Dora E

机构信息

Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA.

出版信息

J Neurophysiol. 2008 Dec;100(6):2981-96. doi: 10.1152/jn.90677.2008. Epub 2008 Oct 8.

Abstract

Spatial orientation is the sense of body orientation and self-motion relative to the stationary environment, fundamental to normal waking behavior and control of everyday motor actions including eye movements, postural control, and locomotion. The brain achieves spatial orientation by integrating visual, vestibular, and somatosensory signals. Over the past years, considerable progress has been made toward understanding how these signals are processed by the brain using multiple computational approaches that include frequency domain analysis, the concept of internal models, observer theory, Bayesian theory, and Kalman filtering. Here we put these approaches in context by examining the specific questions that can be addressed by each technique and some of the scientific insights that have resulted. We conclude with a recent application of particle filtering, a probabilistic simulation technique that aims to generate the most likely state estimates by incorporating internal models of sensor dynamics and physical laws and noise associated with sensory processing as well as prior knowledge or experience. In this framework, priors for low angular velocity and linear acceleration can explain the phenomena of velocity storage and frequency segregation, both of which have been modeled previously using arbitrary low-pass filtering. How Kalman and particle filters may be implemented by the brain is an emerging field. Unlike past neurophysiological research that has aimed to characterize mean responses of single neurons, investigations of dynamic Bayesian inference should attempt to characterize population activities that constitute probabilistic representations of sensory and prior information.

摘要

空间定向是指身体相对于静止环境的定向感和自我运动感,对于正常的清醒行为以及包括眼球运动、姿势控制和运动在内的日常运动行为的控制至关重要。大脑通过整合视觉、前庭和体感信号来实现空间定向。在过去几年中,利用包括频域分析、内部模型概念、观测器理论、贝叶斯理论和卡尔曼滤波在内的多种计算方法,在理解大脑如何处理这些信号方面取得了相当大的进展。在这里,我们通过研究每种技术可以解决的具体问题以及由此产生的一些科学见解,将这些方法置于背景之中。我们以粒子滤波的最新应用作为结尾,粒子滤波是一种概率模拟技术,旨在通过纳入传感器动力学和物理定律的内部模型以及与感官处理相关的噪声以及先验知识或经验来生成最可能的状态估计。在这个框架中,低角速度和线性加速度的先验可以解释速度存储和频率分离现象,这两种现象此前都曾使用任意低通滤波进行建模。大脑如何实现卡尔曼滤波器和粒子滤波器是一个新兴领域。与过去旨在表征单个神经元平均反应的神经生理学研究不同,动态贝叶斯推理的研究应试图表征构成感官和先验信息概率表示的群体活动。

相似文献

1
Computational approaches to spatial orientation: from transfer functions to dynamic Bayesian inference.
J Neurophysiol. 2008 Dec;100(6):2981-96. doi: 10.1152/jn.90677.2008. Epub 2008 Oct 8.
2
Multisensory processing in spatial orientation: an inverse probabilistic approach.
J Neurosci. 2011 Apr 6;31(14):5365-77. doi: 10.1523/JNEUROSCI.6472-10.2011.
3
Relationships between observer and Kalman Filter models for human dynamic spatial orientation.
J Vestib Res. 2012 Jan 1;22(2):69-80. doi: 10.3233/VES-2012-0451.
5
Natural statistics of human head orientation constrain models of vestibular processing.
Sci Rep. 2023 Apr 11;13(1):5882. doi: 10.1038/s41598-023-32794-z.
6
An integrative neural network for detecting inertial motion and head orientation.
J Neurophysiol. 2004 Aug;92(2):905-25. doi: 10.1152/jn.01234.2003. Epub 2004 Mar 31.
7
Visuovestibular perception of self-motion modeled as a dynamic optimization process.
Biol Cybern. 2002 Oct;87(4):301-14. doi: 10.1007/s00422-002-0357-7.
8
Mathematical models for dynamic, multisensory spatial orientation perception.
Prog Brain Res. 2019;248:65-90. doi: 10.1016/bs.pbr.2019.04.014. Epub 2019 May 24.
9
Bayesian State Estimation in Sensorimotor Systems With Particle Filtering.
IEEE Trans Neural Syst Rehabil Eng. 2020 Jul;28(7):1528-1538. doi: 10.1109/TNSRE.2020.2996963.

引用本文的文献

1
Visuoinertial and visual feedback in online steering control.
PLoS Comput Biol. 2025 Aug 11;21(8):e1012659. doi: 10.1371/journal.pcbi.1012659. eCollection 2025 Aug.
2
Learning capabilities to resolve tilt-translation ambiguity in goldfish.
Front Neurol. 2024 May 7;15:1304496. doi: 10.3389/fneur.2024.1304496. eCollection 2024.
3
Humans gradually integrate sudden gain or loss of visual information into spatial orientation perception.
Front Neurosci. 2024 Jan 8;17:1274949. doi: 10.3389/fnins.2023.1274949. eCollection 2023.
4
Representational horizon and visual space orientation: An investigation into the role of visual contextual cues on spatial mislocalisations.
Atten Percept Psychophys. 2024 May;86(4):1222-1236. doi: 10.3758/s13414-023-02783-5. Epub 2023 Sep 20.
5
Visuo-vestibular heading perception: a model system to study multi-sensory decision making.
Philos Trans R Soc Lond B Biol Sci. 2023 Sep 25;378(1886):20220334. doi: 10.1098/rstb.2022.0334. Epub 2023 Aug 7.
6
A gait-based paradigm to investigate central body representation in cervical dystonia patients.
Neurol Sci. 2023 Apr;44(4):1311-1318. doi: 10.1007/s10072-022-06548-0. Epub 2022 Dec 19.
7
How Peripheral Vestibular Damage Affects Velocity Storage: a Causative Explanation.
J Assoc Res Otolaryngol. 2022 Aug;23(4):551-566. doi: 10.1007/s10162-022-00853-3. Epub 2022 Jun 29.
8
Keep a level head to know the way ahead: How rodents travel on inclined surfaces?
iScience. 2022 May 18;25(6):104424. doi: 10.1016/j.isci.2022.104424. eCollection 2022 Jun 17.
9
Vestibular Precision at the Level of Perception, Eye Movements, Posture, and Neurons.
Neuroscience. 2021 Aug 1;468:282-320. doi: 10.1016/j.neuroscience.2021.05.028. Epub 2021 Jun 2.
10
Beyond sensory conflict: The role of beliefs and perception in motion sickness.
PLoS One. 2021 Jan 19;16(1):e0245295. doi: 10.1371/journal.pone.0245295. eCollection 2021.

本文引用的文献

1
Neural correlates of forward and inverse models for eye movements: evidence from three-dimensional kinematics.
J Neurosci. 2008 May 7;28(19):5082-7. doi: 10.1523/JNEUROSCI.0513-08.2008.
2
Vestibular system: the many facets of a multimodal sense.
Annu Rev Neurosci. 2008;31:125-50. doi: 10.1146/annurev.neuro.31.060407.125555.
3
Noise in the nervous system.
Nat Rev Neurosci. 2008 Apr;9(4):292-303. doi: 10.1038/nrn2258.
4
Shared computational mechanism for tilt compensation accounts for biased verticality percepts in motion and pattern vision.
J Neurophysiol. 2008 Feb;99(2):915-30. doi: 10.1152/jn.00921.2007. Epub 2007 Dec 19.
5
Vestibular signals in primate thalamus: properties and origins.
J Neurosci. 2007 Dec 12;27(50):13590-602. doi: 10.1523/JNEUROSCI.3931-07.2007.
6
Probabilistic models in human sensorimotor control.
Hum Mov Sci. 2007 Aug;26(4):511-24. doi: 10.1016/j.humov.2007.05.005. Epub 2007 Jul 12.
7
Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame.
Neuron. 2007 Jun 21;54(6):973-85. doi: 10.1016/j.neuron.2007.06.003.
8
Optimal sensorimotor integration in recurrent cortical networks: a neural implementation of Kalman filters.
J Neurosci. 2007 May 23;27(21):5744-56. doi: 10.1523/JNEUROSCI.3985-06.2007.
9
Current models of the ocular motor system.
Dev Ophthalmol. 2007;40:158-74. doi: 10.1159/000100485.
10
A reevaluation of the inverse dynamic model for eye movements.
J Neurosci. 2007 Feb 7;27(6):1346-55. doi: 10.1523/JNEUROSCI.3822-06.2007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验