Suppr超能文献

带有羧基末端自组装单层涂层的插入式穿梭器,用于将柔性聚合物神经探针植入大脑。

Insertion shuttle with carboxyl terminated self-assembled monolayer coatings for implanting flexible polymer neural probes in the brain.

机构信息

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

J Neurosci Methods. 2009 Nov 15;184(2):199-205. doi: 10.1016/j.jneumeth.2009.08.002. Epub 2009 Aug 8.

Abstract

Penetrating microscale microelectrodes made from flexible polymers tend to bend or deflect and may fail to reach their target location. The development of flexible neural probes requires methods for reliable and controlled insertion into the brain. Previous approaches for implanting flexible probes into the cortex required modifications that negate the flexibility, limit the functionality, or restrict the design of the probe. This study investigated the use of an electronegative self-assembled monolayer (SAM) as a coating on a stiff insertion shuttle to carry a polymer probe into the cerebral cortex, and then the detachment of the shuttle from the probe by altering the shuttle's hydrophobicity. Polydimethylsiloxane (PDMS) and polyimide probes were inserted into an agarose in vitro brain model using silicon insertion shuttles. The silicon shuttles were coated with a carboxyl terminal SAM. The precision of insertion using the shuttle was measured by the percentage displacement of the probe upon shuttle removal after the probe was fully inserted. The average relative displacement of polyimide probes inserted with SAM-coated shuttles was (1.0+/-0.66)% of the total insertion depth compared to (26.5+/-3.7)% for uncoated silicon shuttles. The average relative displacement of PDMS probes was (2.1+/-1.1)% of the insertion depth compared to 100% (complete removal) for uncoated silicon shuttles. SAM-coated shuttles were further validated through their use to reliably insert PDMS probes in the cerebral cortex of rodents. This study found that SAM-coated silicon shuttles are a viable method for accurately and precisely inserting flexible neural probes in the brain.

摘要

由柔性聚合物制成的穿透微尺度微电极往往会弯曲或偏转,并且可能无法到达目标位置。柔性神经探针的开发需要可靠且受控地插入大脑的方法。以前将柔性探针植入皮质的方法需要进行修改,这些修改会否定其柔性、限制其功能或限制探针的设计。本研究探讨了使用带负电荷的自组装单层 (SAM) 作为刚性插入梭的涂层,将聚合物探针带入大脑皮层,然后通过改变梭的疏水性从探针上脱离梭。使用硅插入梭将聚二甲基硅氧烷 (PDMS) 和聚酰亚胺探针插入琼脂糖体外脑模型中。硅梭涂有羧基末端 SAM。通过在探针完全插入后移除梭时探针的位移百分比来测量使用梭的插入精度。与未涂层的硅梭相比,具有 SAM 涂层的梭插入的聚酰亚胺探针的平均相对位移为插入深度的 (1.0+/-0.66)%,而未涂层的硅梭为 (26.5+/-3.7)%。具有 SAM 涂层的梭插入的 PDMS 探针的平均相对位移为插入深度的 (2.1+/-1.1)%,而未涂层的硅梭则为 100%(完全移除)。通过在啮齿动物大脑皮层中可靠地插入 PDMS 探针进一步验证了 SAM 涂层的梭。本研究发现,SAM 涂层的硅梭是一种在大脑中准确、精确地插入柔性神经探针的可行方法。

相似文献

1
Insertion shuttle with carboxyl terminated self-assembled monolayer coatings for implanting flexible polymer neural probes in the brain.
J Neurosci Methods. 2009 Nov 15;184(2):199-205. doi: 10.1016/j.jneumeth.2009.08.002. Epub 2009 Aug 8.
2
Control of neural probe shank flexibility by fluidic pressure in embedded microchannel using PDMS/PI hybrid substrate.
PLoS One. 2019 Jul 24;14(7):e0220258. doi: 10.1371/journal.pone.0220258. eCollection 2019.
3
A bilayered PVA/PLGA-bioresorbable shuttle to improve the implantation of flexible neural probes.
J Neural Eng. 2018 Dec;15(6):065001. doi: 10.1088/1741-2552/aadc1d. Epub 2018 Aug 22.
5
Coating flexible probes with an ultra fast degrading polymer to aid in tissue insertion.
Biomed Microdevices. 2015 Apr;17(2):34. doi: 10.1007/s10544-015-9927-z.
6
A flexible depth probe using liquid crystal polymer.
IEEE Trans Biomed Eng. 2012 Jul;59(7):2085-94. doi: 10.1109/TBME.2012.2196274.
8
Ultrasoft microwire neural electrodes improve chronic tissue integration.
Acta Biomater. 2017 Apr 15;53:46-58. doi: 10.1016/j.actbio.2017.02.010. Epub 2017 Feb 6.
9
Chronic tissue response to carboxymethyl cellulose based dissolvable insertion needle for ultra-small neural probes.
Biomaterials. 2014 Nov;35(34):9255-68. doi: 10.1016/j.biomaterials.2014.07.039. Epub 2014 Aug 13.

引用本文的文献

2
Overcoming failure: improving acceptance and success of implanted neural interfaces.
Bioelectron Med. 2025 Mar 14;11(1):6. doi: 10.1186/s42234-025-00168-7.
3
Interfacing with the Brain: How Nanotechnology Can Contribute.
ACS Nano. 2025 Mar 25;19(11):10630-10717. doi: 10.1021/acsnano.4c10525. Epub 2025 Mar 10.
4
Enhancing biocompatibility of the brain-machine interface: A review.
Bioact Mater. 2024 Sep 11;42:531-549. doi: 10.1016/j.bioactmat.2024.08.034. eCollection 2024 Dec.
5
Design, Fabrication, and Implantation of Invasive Microelectrode Arrays as in vivo Brain Machine Interfaces: A Comprehensive Review.
J Manuf Process. 2024 Sep 30;126:185-207. doi: 10.1016/j.jmapro.2024.07.100. Epub 2024 Jul 31.
6
Self-assembled ultraflexible probes for long-term neural recordings and neuromodulation.
Nat Protoc. 2023 Jun;18(6):1712-1744. doi: 10.1038/s41596-023-00824-9. Epub 2023 May 29.
7
Implantable intracortical microelectrodes: reviewing the present with a focus on the future.
Microsyst Nanoeng. 2023 Jan 5;9:7. doi: 10.1038/s41378-022-00451-6. eCollection 2023.
8
A Review: Research Progress of Neural Probes for Brain Research and Brain-Computer Interface.
Biosensors (Basel). 2022 Dec 14;12(12):1167. doi: 10.3390/bios12121167.
9
In Vivo Penetrating Microelectrodes for Brain Electrophysiology.
Sensors (Basel). 2022 Nov 23;22(23):9085. doi: 10.3390/s22239085.
10
A Parylene Neural Probe Array for Multi-Region Deep Brain Recordings.
J Microelectromech Syst. 2020 Aug;29(4):499-513. doi: 10.1109/jmems.2020.3000235. Epub 2022 Jun 22.

本文引用的文献

1
Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities.
J Neurosci. 2008 Nov 12;28(46):11830-8. doi: 10.1523/JNEUROSCI.3879-08.2008.
2
Neurotrophic electrode: method of assembly and implantation into human motor speech cortex.
J Neurosci Methods. 2008 Sep 30;174(2):168-76. doi: 10.1016/j.jneumeth.2008.06.030. Epub 2008 Jul 10.
3
The NeuroProbes Project.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:6443-5. doi: 10.1109/IEMBS.2007.4353831.
4
Highly sensitive and selective method to detect dopamine in the presence of ascorbic acid by a new polymeric composite film.
Anal Biochem. 2007 Dec 15;371(2):229-37. doi: 10.1016/j.ab.2007.07.025. Epub 2007 Aug 2.
5
In vivo toxic studies and biodistribution of near infrared sensitive Au-Au(2)S nanoparticles as potential drug delivery carriers.
J Mater Sci Mater Med. 2008 Jul;19(7):2581-8. doi: 10.1007/s10856-007-3210-7. Epub 2007 Aug 1.
6
Neural probe design for reduced tissue encapsulation in CNS.
Biomaterials. 2007 Sep;28(25):3594-607. doi: 10.1016/j.biomaterials.2007.03.024. Epub 2007 Apr 5.
7
Spatiotemporal pH dynamics following insertion of neural microelectrode arrays.
J Neurosci Methods. 2007 Mar 15;160(2):276-87. doi: 10.1016/j.jneumeth.2006.09.023. Epub 2006 Nov 3.
8
A floating metal microelectrode array for chronic implantation.
J Neurosci Methods. 2007 Feb 15;160(1):122-7. doi: 10.1016/j.jneumeth.2006.09.005. Epub 2006 Oct 25.
9
Flexible polyimide microelectrode array for in vivo recordings and current source density analysis.
Biosens Bioelectron. 2007 Mar 15;22(8):1783-90. doi: 10.1016/j.bios.2006.08.035. Epub 2006 Oct 5.
10
Brain-controlled interfaces: movement restoration with neural prosthetics.
Neuron. 2006 Oct 5;52(1):205-20. doi: 10.1016/j.neuron.2006.09.019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验