Suppr超能文献

基因间初级微小RNA的耦合RNA加工与转录

Coupled RNA processing and transcription of intergenic primary microRNAs.

作者信息

Ballarino Monica, Pagano Francesca, Girardi Erika, Morlando Mariangela, Cacchiarelli Davide, Marchioni Marcella, Proudfoot Nicholas J, Bozzoni Irene

机构信息

University of Rome La Sapienza, P.le A. Moro 5, 00185 Rome, Italy.

出版信息

Mol Cell Biol. 2009 Oct;29(20):5632-8. doi: 10.1128/MCB.00664-09. Epub 2009 Aug 10.

Abstract

The first step in microRNA (miRNA) biogenesis occurs in the nucleus and is mediated by the Microprocessor complex containing the RNase III-like enzyme Drosha and its cofactor DGCR8. Here we show that the 5'-->3' exonuclease Xrn2 associates with independently transcribed miRNAs and, in combination with Drosha processing, attenuates transcription in downstream regions. We suggest that, after Drosha cleavage, a torpedo-like mechanism acts on nascent long precursor miRNAs, whereby Xrn2 exonuclease degrades the RNA polymerase II-associated transcripts inducing its release from the template. While involved in primary transcript termination, this attenuation effect does not restrict clustered miRNA expression, which, in the majority of cases, is separated by short spacers. We also show that transcripts originating from a miRNA promoter are retained on the chromatin template and are more efficiently processed than those produced from mRNA or snRNA Pol II-dependent promoters. These data imply that coupling between transcription and processing promotes efficient expression of independently transcribed miRNAs.

摘要

微小RNA(miRNA)生物合成的第一步发生在细胞核中,由包含RNase III样酶Drosha及其辅因子DGCR8的微处理器复合物介导。我们在此表明,5'→3'核酸外切酶Xrn2与独立转录的miRNA结合,并与Drosha加工一起,减弱下游区域的转录。我们认为,在Drosha切割后,一种类似鱼雷的机制作用于新生的长前体miRNA,由此Xrn2核酸外切酶降解与RNA聚合酶II相关的转录本,诱导其从模板上释放。虽然参与初级转录本的终止,但这种衰减效应并不限制成簇miRNA的表达,在大多数情况下,成簇miRNA由短间隔序列分隔。我们还表明,源自miRNA启动子的转录本保留在染色质模板上,并且比由mRNA或snRNA Pol II依赖性启动子产生的转录本更有效地被加工。这些数据表明转录与加工之间的偶联促进了独立转录的miRNA的有效表达。

相似文献

1
Coupled RNA processing and transcription of intergenic primary microRNAs.
Mol Cell Biol. 2009 Oct;29(20):5632-8. doi: 10.1128/MCB.00664-09. Epub 2009 Aug 10.
2
Primary microRNA processing assay reconstituted using recombinant Drosha and DGCR8.
Methods Mol Biol. 2014;1095:73-86. doi: 10.1007/978-1-62703-703-7_5.
3
Post-transcriptional control of DGCR8 expression by the Microprocessor.
RNA. 2009 Jun;15(6):1005-11. doi: 10.1261/rna.1591709. Epub 2009 Apr 21.
4
Drosha regulates gene expression independently of RNA cleavage function.
Cell Rep. 2013 Dec 26;5(6):1499-510. doi: 10.1016/j.celrep.2013.11.032. Epub 2013 Dec 19.
5
Primary microRNA transcripts are processed co-transcriptionally.
Nat Struct Mol Biol. 2008 Sep;15(9):902-9. doi: 10.1038/nsmb.1475.
6
HP1BP3, a Chromatin Retention Factor for Co-transcriptional MicroRNA Processing.
Mol Cell. 2016 Aug 4;63(3):420-32. doi: 10.1016/j.molcel.2016.06.014. Epub 2016 Jul 14.
8
The nuclear RNase III Drosha initiates microRNA processing.
Nature. 2003 Sep 25;425(6956):415-9. doi: 10.1038/nature01957.
10
The Microprocessor complex mediates the genesis of microRNAs.
Nature. 2004 Nov 11;432(7014):235-40. doi: 10.1038/nature03120. Epub 2004 Nov 7.

引用本文的文献

2
MicroRNA biogenesis is broadly disrupted by inhibition of the splicing factor SF3B1.
Nucleic Acids Res. 2024 Aug 27;52(15):9210-9229. doi: 10.1093/nar/gkae505.
4
Recent progress in miRNA biogenesis and decay.
RNA Biol. 2024 Jan;21(1):1-8. doi: 10.1080/15476286.2023.2288741. Epub 2023 Nov 29.
5
Parameters of clustered suboptimal miRNA biogenesis.
Proc Natl Acad Sci U S A. 2023 Oct 10;120(41):e2306727120. doi: 10.1073/pnas.2306727120. Epub 2023 Oct 3.
6
microRNAs in action: biogenesis, function and regulation.
Nat Rev Genet. 2023 Dec;24(12):816-833. doi: 10.1038/s41576-023-00611-y. Epub 2023 Jun 28.
7
Extracellular Vesicle MicroRNA in the Kidney.
Compr Physiol. 2023 Jun 26;13(3):4833-4850. doi: 10.1002/cphy.c220023.
9
Crosstalk between miRNAs and DNA Methylation in Cancer.
Genes (Basel). 2023 May 12;14(5):1075. doi: 10.3390/genes14051075.
10
Role of the proline-rich disordered domain of DROSHA in intronic microRNA processing.
Genes Dev. 2023 May 1;37(9-10):383-397. doi: 10.1101/gad.350275.122. Epub 2023 May 26.

本文引用的文献

2
Primary microRNA transcripts are processed co-transcriptionally.
Nat Struct Mol Biol. 2008 Sep;15(9):902-9. doi: 10.1038/nsmb.1475.
3
The let-7 family of microRNAs.
Trends Cell Biol. 2008 Oct;18(10):505-16. doi: 10.1016/j.tcb.2008.07.007. Epub 2008 Sep 4.
5
SMAD proteins control DROSHA-mediated microRNA maturation.
Nature. 2008 Jul 3;454(7200):56-61. doi: 10.1038/nature07086. Epub 2008 Jun 11.
6
Molecular dissection of mammalian RNA polymerase II transcriptional termination.
Mol Cell. 2008 Mar 14;29(5):600-10. doi: 10.1016/j.molcel.2007.12.019.
7
miRBase: tools for microRNA genomics.
Nucleic Acids Res. 2008 Jan;36(Database issue):D154-8. doi: 10.1093/nar/gkm952. Epub 2007 Nov 8.
8
Genomic analysis of human microRNA transcripts.
Proc Natl Acad Sci U S A. 2007 Nov 6;104(45):17719-24. doi: 10.1073/pnas.0703890104. Epub 2007 Oct 26.
9
The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a.
Nat Struct Mol Biol. 2007 Jul;14(7):591-6. doi: 10.1038/nsmb1250. Epub 2007 Jun 10.
10
Processing of intronic microRNAs.
EMBO J. 2007 Feb 7;26(3):775-83. doi: 10.1038/sj.emboj.7601512. Epub 2007 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验