Suppr超能文献

内含子微小RNA的加工

Processing of intronic microRNAs.

作者信息

Kim Young-Kook, Kim V Narry

机构信息

Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea.

出版信息

EMBO J. 2007 Feb 7;26(3):775-83. doi: 10.1038/sj.emboj.7601512. Epub 2007 Jan 25.

Abstract

The majority of human microRNA (miRNA) loci are located within intronic regions and are transcribed by RNA polymerase II as part of their hosting transcription units. The primary transcripts are cleaved by Drosha to release approximately 70 nt pre-miRNAs that are subsequently processed by Dicer to generate mature approximately 22 nt miRNAs. It is generally believed that intronic miRNAs are released by Drosha from excised introns after the splicing reaction has occurred. However, our database searches and experiments indicate that intronic miRNAs can be processed from unspliced intronic regions before splicing catalysis. Intriguingly, cleavage of an intron by Drosha does not significantly affect the production of mature mRNA, suggesting that a continuous intron may not be required for splicing and that the exons may be tethered to each other. Hence, Drosha may cleave intronic miRNAs between the splicing commitment step and the excision step, thereby ensuring both miRNA biogenesis and protein synthesis from a single primary transcript. Our study provides a novel example of eukaryotic gene organization and RNA-processing control.

摘要

大多数人类微小RNA(miRNA)基因座位于内含子区域,由RNA聚合酶II转录,作为其宿主转录单元的一部分。初级转录本被Drosha切割以释放约70个核苷酸的前体miRNA,随后Dicer对其进行加工以生成约22个核苷酸的成熟miRNA。一般认为,内含子miRNA是在剪接反应发生后由Drosha从切除的内含子中释放出来的。然而,我们的数据库搜索和实验表明,内含子miRNA可以在剪接催化之前从未剪接的内含子区域加工而来。有趣的是,Drosha对内含子的切割不会显著影响成熟mRNA的产生,这表明剪接可能不需要连续的内含子,外显子可能相互连接。因此,Drosha可能在剪接承诺步骤和切除步骤之间切割内含子miRNA,从而确保从单个初级转录本同时进行miRNA生物合成和蛋白质合成。我们的研究提供了一个真核基因组织和RNA加工控制的新例子。

相似文献

1
Processing of intronic microRNAs.
EMBO J. 2007 Feb 7;26(3):775-83. doi: 10.1038/sj.emboj.7601512. Epub 2007 Jan 25.
2
Isolation and identification of gene-specific microRNAs.
Methods Mol Biol. 2006;342:313-20. doi: 10.1385/1-59745-123-1:313.
3
Excess of microRNAs in large and very 5' biased introns.
Biochem Biophys Res Commun. 2008 Apr 11;368(3):709-15. doi: 10.1016/j.bbrc.2008.01.117. Epub 2008 Feb 4.
4
The Drosha-DGCR8 complex in primary microRNA processing.
Genes Dev. 2004 Dec 15;18(24):3016-27. doi: 10.1101/gad.1262504. Epub 2004 Dec 1.
5
MicroRNA biogenesis: isolation and characterization of the microprocessor complex.
Methods Mol Biol. 2006;342:33-47. doi: 10.1385/1-59745-123-1:33.
6
In vitro and in vivo assays for the activity of Drosha complex.
Methods Enzymol. 2007;427:89-106. doi: 10.1016/S0076-6879(07)27005-3.
7
Alternative splicing regulates biogenesis of miRNAs located across exon-intron junctions.
Mol Cell. 2013 Jun 27;50(6):869-81. doi: 10.1016/j.molcel.2013.05.007. Epub 2013 Jun 6.
8
Isolation and identification of gene-specific microRNAs.
Methods Mol Biol. 2013;936:271-8. doi: 10.1007/978-1-62703-083-0_21.
9
Reliable prediction of Drosha processing sites improves microRNA gene prediction.
Bioinformatics. 2007 Jan 15;23(2):142-9. doi: 10.1093/bioinformatics/btl570. Epub 2006 Nov 14.
10
Role of pri-miRNA tertiary structure in miR-17~92 miRNA biogenesis.
RNA Biol. 2011 Nov-Dec;8(6):1105-14. doi: 10.4161/rna.8.6.17410. Epub 2011 Nov 1.

引用本文的文献

1
Nuclear Roles of Spliceosome-Associated microRNAs in Neuronal Cancer Cells.
Int J Mol Sci. 2025 Aug 28;26(17):8349. doi: 10.3390/ijms26178349.
2
The Multifaceted Role of miR-211 in Health and Disease.
Biomolecules. 2025 Aug 1;15(8):1109. doi: 10.3390/biom15081109.
3
Non-Coding RNAs in Asthma: Regulators of Eosinophil Biology and Airway Inflammation.
Diagnostics (Basel). 2025 Jul 10;15(14):1750. doi: 10.3390/diagnostics15141750.
4
Profiling miRNA changes in Epstein-Barr virus lytic infection identifies a function for BZLF1 in upregulating miRNAs from the DLK1-DIO3 locus.
PLoS Pathog. 2025 Jul 17;21(7):e1013347. doi: 10.1371/journal.ppat.1013347. eCollection 2025 Jul.
5
MicroRNAs at the crossroads of exercise and ferroptosis: a regulatory bridge.
Clin Exp Med. 2025 Jul 6;25(1):234. doi: 10.1007/s10238-025-01766-0.
6
7
The role of non-coding RNAs in the regulation of cell death pathways in melanoma.
Discov Oncol. 2025 Jun 11;16(1):1063. doi: 10.1007/s12672-025-02888-3.
8
Let-7 Family as a Mediator of Exercise on Alzheimer's Disease.
Cell Mol Neurobiol. 2025 May 19;45(1):43. doi: 10.1007/s10571-025-01559-9.
9
The Luciferase Reporter on Intronic MicroRNA-Directed Regulation.
Methods Mol Biol. 2025;2900:203-212. doi: 10.1007/978-1-0716-4398-3_13.

本文引用的文献

1
Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex.
Cell. 2006 Jun 2;125(5):887-901. doi: 10.1016/j.cell.2006.03.043.
2
Exon tethering in transcription by RNA polymerase II.
Mol Cell. 2006 Mar 17;21(6):849-59. doi: 10.1016/j.molcel.2006.01.032.
3
Control of translation and mRNA degradation by miRNAs and siRNAs.
Genes Dev. 2006 Mar 1;20(5):515-24. doi: 10.1101/gad.1399806.
4
MicroRNA function: multiple mechanisms for a tiny RNA?
RNA. 2005 Dec;11(12):1753-61. doi: 10.1261/rna.2248605.
5
Current perspectives in intronic micro RNAs (miRNAs).
J Biomed Sci. 2006 Jan;13(1):5-15. doi: 10.1007/s11373-005-9036-8. Epub 2005 Oct 14.
6
Characterization of a highly variable eutherian microRNA gene.
RNA. 2005 Aug;11(8):1245-57. doi: 10.1261/rna.2890305. Epub 2005 Jun 29.
7
MicroRNA biogenesis: coordinated cropping and dicing.
Nat Rev Mol Cell Biol. 2005 May;6(5):376-85. doi: 10.1038/nrm1644.
10
The Drosha-DGCR8 complex in primary microRNA processing.
Genes Dev. 2004 Dec 15;18(24):3016-27. doi: 10.1101/gad.1262504. Epub 2004 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验