Suppr超能文献

细胞过程的生物模拟方法。

Approaches to biosimulation of cellular processes.

作者信息

Bruggeman F J, Westerhoff H V

机构信息

Department of Molecular Cell Physiology, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands.

出版信息

J Biol Phys. 2006 Oct;32(3-4):273-88. doi: 10.1007/s10867-006-9016-x. Epub 2006 Nov 11.

Abstract

Modelling and simulation are at the heart of the rapidly developing field of systems biology. This paper reviews various types of models, simulation methods, and theoretical approaches that are presently being used in the quantitative description of cellular processes. We first describe how molecular interaction networks can be represented by means of stoichiometric, topological and kinetic models. We briefly discuss the formulation of kinetic models using mesoscopic (stochastic) or macroscopic (continuous) approaches, and we go on to describe how detailed models of molecular interaction networks (silicon cells) can be constructed on the basis of experimentally determined kinetic parameters for cellular processes. We show how theory can help in analyzing models by applying control analysis to a recently published silicon cell model. Finally, we review some of the theoretical approaches available to analyse kinetic models and experimental data, respectively.

摘要

建模与模拟是快速发展的系统生物学领域的核心。本文综述了目前用于细胞过程定量描述的各种模型类型、模拟方法和理论方法。我们首先描述分子相互作用网络如何通过化学计量学、拓扑学和动力学模型来表示。我们简要讨论使用介观(随机)或宏观(连续)方法构建动力学模型的公式,并继续描述如何基于细胞过程的实验确定的动力学参数构建分子相互作用网络(硅细胞)的详细模型。我们展示了理论如何通过将控制分析应用于最近发表的硅细胞模型来帮助分析模型。最后,我们分别综述了一些可用于分析动力学模型和实验数据的理论方法。

相似文献

1
Approaches to biosimulation of cellular processes.
J Biol Phys. 2006 Oct;32(3-4):273-88. doi: 10.1007/s10867-006-9016-x. Epub 2006 Nov 11.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
MONALISA for stochastic simulations of Petri net models of biochemical systems.
BMC Bioinformatics. 2015 Jul 10;16:215. doi: 10.1186/s12859-015-0596-y.
5
Effective integration of systems biology, biomarkers, biosimulation and modelling in streamlining drug development.
Eur J Pharm Sci. 2007 May;31(1):62-7. doi: 10.1016/j.ejps.2007.02.003. Epub 2007 Feb 20.
6
Comparison of modelling approaches demonstrated for p16-mediated signalling pathway in higher eukaryotes.
Biosystems. 2021 Dec;210:104562. doi: 10.1016/j.biosystems.2021.104562. Epub 2021 Oct 16.
7
The Silicon Cell initiative: working towards a detailed kinetic description at the cellular level.
Curr Opin Biotechnol. 2005 Jun;16(3):336-43. doi: 10.1016/j.copbio.2005.05.003.
8
Modelling biological complexity: a physical scientist's perspective.
J R Soc Interface. 2005 Sep 22;2(4):267-80. doi: 10.1098/rsif.2005.0045.
9
Cancer systems biology and modeling: microscopic scale and multiscale approaches.
Semin Cancer Biol. 2015 Feb;30:60-9. doi: 10.1016/j.semcancer.2014.03.003. Epub 2014 Mar 18.
10
Modelling approaches to the dewetting of evaporating thin films of nanoparticle suspensions.
J Phys Condens Matter. 2009 Jul 1;21(26):264016. doi: 10.1088/0953-8984/21/26/264016. Epub 2009 Jun 11.

引用本文的文献

本文引用的文献

1
Modelling the human immune system by combining bioinformatics and systems biology approaches.
J Biol Phys. 2006 Oct;32(3-4):335-53. doi: 10.1007/s10867-006-9019-7. Epub 2006 Oct 27.
2
Kinetic model of mitochondrial Krebs cycle: unraveling the mechanism of salicylate hepatotoxic effects.
J Biol Phys. 2006 Oct;32(3-4):245-71. doi: 10.1007/s10867-006-9015-y. Epub 2006 Oct 26.
3
Modelling the electrical activity of pancreatic alpha-cells based on experimental data from intact mouse islets.
J Biol Phys. 2006 Oct;32(3-4):209-29. doi: 10.1007/s10867-006-9013-0. Epub 2006 Nov 9.
4
Unraveling cell processes: interference imaging interwoven with data analysis.
J Biol Phys. 2006 Oct;32(3-4):191-208. doi: 10.1007/s10867-006-9012-1. Epub 2006 Nov 11.
5
Dynamic modeling of the central carbon metabolism of Escherichia coli.
Biotechnol Bioeng. 2002 Jul 5;79(1):53-73. doi: 10.1002/bit.10288.
6
Neural synchronization via potassium signaling.
Int J Neural Syst. 2006 Apr;16(2):99-109. doi: 10.1142/S0129065706000536.
7
Unraveling the complexity of flux regulation: a new method demonstrated for nutrient starvation in Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2166-71. doi: 10.1073/pnas.0509831103. Epub 2006 Feb 7.
8
Towards building the silicon cell: a modular approach.
Biosystems. 2006 Feb-Mar;83(2-3):207-16. doi: 10.1016/j.biosystems.2005.07.006. Epub 2005 Oct 19.
9
Accelerated stochastic simulation of the stiff enzyme-substrate reaction.
J Chem Phys. 2005 Oct 8;123(14):144917. doi: 10.1063/1.2052596.
10
Control of MAPK signalling: from complexity to what really matters.
Oncogene. 2005 Aug 25;24(36):5533-42. doi: 10.1038/sj.onc.1208817.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验