Suppr超能文献

通过结合生物信息学和系统生物学方法对人类免疫系统进行建模。

Modelling the human immune system by combining bioinformatics and systems biology approaches.

作者信息

Rapin Nicolas, Kesmir Can, Frankild Sune, Nielsen Morten, Lundegaard Claus, Brunak Søren, Lund Ole

机构信息

Center for Biological Sequence Analysis, BioCentrum-DTU, Technical University of Denmark, 2800 Lyngby, Denmark.

出版信息

J Biol Phys. 2006 Oct;32(3-4):335-53. doi: 10.1007/s10867-006-9019-7. Epub 2006 Oct 27.

Abstract

Over the past decade a number of bioinformatics tools have been developed that use genomic sequences as input to predict to which parts of a microbe the immune system will react, the so-called epitopes. Many predicted epitopes have later been verified experimentally, demonstrating the usefulness of such predictions. At the same time, simulation models have been developed that describe the dynamics of different immune cell populations and their interactions with microbes. These models have been used to explain experimental findings where timing is of importance, such as the time between administration of a vaccine and infection with the microbe that the vaccine is intended to protect against. In this paper, we outline a framework for integration of these two approaches. As an example, we develop a model in which HIV dynamics are correlated with genomics data. For the first time, the fitness of wild type and mutated virus are assessed by means of a sequence-dependent scoring matrix, derived from a BLOSUM matrix, that links protein sequences to growth rates of the virus in the mathematical model. A combined bioinformatics and systems biology approach can lead to a better understanding of immune system-related diseases where both timing and genomic information are of importance.

摘要

在过去十年中,已经开发出了许多生物信息学工具,这些工具将基因组序列作为输入,来预测免疫系统会对微生物的哪些部分产生反应,即所谓的表位。许多预测的表位后来都通过实验得到了验证,证明了此类预测的实用性。与此同时,已经开发出了模拟模型,用于描述不同免疫细胞群体的动态以及它们与微生物的相互作用。这些模型已被用于解释时间很重要的实验结果,比如接种疫苗与感染疫苗旨在预防的微生物之间的时间间隔。在本文中,我们概述了整合这两种方法的框架。作为一个例子,我们开发了一个模型,其中HIV动态与基因组数据相关联。首次通过一个基于BLOSUM矩阵推导出来的序列依赖评分矩阵,在数学模型中将蛋白质序列与病毒的生长速率联系起来,以此评估野生型和突变型病毒的适应性。生物信息学和系统生物学相结合的方法能够更好地理解免疫系统相关疾病,在这类疾病中,时间和基因组信息都很重要。

相似文献

2
5
8

引用本文的文献

2
Systems approaches to computational modeling of the oral microbiome.口腔微生物组的系统计算建模方法。
Front Physiol. 2013 Jul 10;4:172. doi: 10.3389/fphys.2013.00172. eCollection 2013.
5
Approaches to biosimulation of cellular processes.细胞过程的生物模拟方法。
J Biol Phys. 2006 Oct;32(3-4):273-88. doi: 10.1007/s10867-006-9016-x. Epub 2006 Nov 11.
7
Modeling the adaptive immune system: predictions and simulations.模拟适应性免疫系统:预测与模拟
Bioinformatics. 2007 Dec 15;23(24):3265-75. doi: 10.1093/bioinformatics/btm471. Epub 2007 Nov 28.

本文引用的文献

4
The role of mutation accumulation in HIV progression.突变积累在HIV进展中的作用。
Proc Biol Sci. 2005 Sep 7;272(1574):1851-8. doi: 10.1098/rspb.2005.3083.
8
HIV dynamics with multiple infections of target cells.靶细胞多重感染情况下的HIV动态变化。
Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8198-203. doi: 10.1073/pnas.0407498102. Epub 2005 May 31.
9
Mycobacterium tuberculosis as viewed through a computer.通过计算机观察的结核分枝杆菌。
Trends Microbiol. 2005 May;13(5):206-11. doi: 10.1016/j.tim.2005.03.005.
10
Modeling and simulation of cancer immunoprevention vaccine.癌症免疫预防疫苗的建模与仿真
Bioinformatics. 2005 Jun 15;21(12):2891-7. doi: 10.1093/bioinformatics/bti426. Epub 2005 Apr 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验