Suppr超能文献

钙对微管电能传递的影响。

Effect of calcium on electrical energy transfer by microtubules.

作者信息

Priel Avner, Ramos Arnolt J, Tuszynski Jack A, Cantiello Horacio F

机构信息

Department of Physics, University of Alberta Edmonton, Edmonton, Alberta, T6G 2J1, Canada.

出版信息

J Biol Phys. 2008 Oct;34(5):475-85. doi: 10.1007/s10867-008-9106-z. Epub 2008 Sep 5.

Abstract

Microtubules (MTs) are important cytoskeletal superstructures implicated in neuronal morphology and function, which are involved in vesicle trafficking, neurite formation and differentiation and other morphological changes. The structural and functional properties of MTs depend on their high intrinsic charge density and functional regulation by the MT depolymerising properties of changes in Ca(2 + ) concentration. Recently, we reported on remarkable properties of isolated MTs, which behave as biomolecular transistors capable of amplifying electrical signals (Priel et al., Biophys J 90:4639-4643, 2006). Here, we demonstrate that MT-bathing (cytoplasmic) Ca(2 + ) concentrations modulate the electrodynamic properties of MTs. Electrical amplification by MTs was exponentially dependent on the Ca(2 + ) concentration between 10( - 7) and 10( - 2) M. However, the electrical connectivity (coupling) of MTs was optimal at a narrower window of Ca(2 + ) concentrations. We observed that while raising bathing Ca(2 + ) concentration increased electrical amplification by MTs, energy transfer was highest in the presence of ethylene glycol tetraacetic acid (lowest Ca(2 + ) concentration). Our data indicate that Ca(2 + ) is an important modulator of electrical amplification by MTs, supporting the hypothesis that this divalent cation, which adsorbs onto the polymer's surface, plays an important role as a regulator of the electrical properties of MTs. The Ca(2 + )-dependent ability of MTs to modulate and amplify electrical signals may provide a novel means of cell signaling, likely contributing to neuronal function.

摘要

微管(MTs)是重要的细胞骨架超结构,与神经元的形态和功能相关,参与囊泡运输、神经突形成与分化以及其他形态变化。微管的结构和功能特性取决于其高固有电荷密度以及钙离子(Ca(2 + ))浓度变化所导致的微管解聚特性对其的功能调节。最近,我们报道了分离出的微管具有显著特性,其表现为能够放大电信号的生物分子晶体管(Priel等人,《生物物理杂志》90:4639 - 4643,2006年)。在此,我们证明微管周围(细胞质)的钙离子(Ca(2 + ))浓度可调节微管的电动力学特性。微管的电信号放大与10( - 7)至10( - 2) M之间的钙离子(Ca(2 + ))浓度呈指数相关。然而,微管的电连接性(耦合)在较窄的钙离子(Ca(2 + ))浓度窗口内最为理想。我们观察到,虽然提高周围钙离子(Ca(2 + ))浓度会增加微管的电信号放大,但在乙二醇四乙酸存在时(最低钙离子(Ca(2 + ))浓度)能量转移最高。我们的数据表明,钙离子(Ca(2 + ))是微管电信号放大的重要调节因子,支持了这样一种假说,即这种吸附在聚合物表面的二价阳离子作为微管电特性的调节因子发挥着重要作用。微管依赖钙离子(Ca(2 + ))调节和放大电信号的能力可能提供一种新的细胞信号传导方式,可能有助于神经元功能。

相似文献

1
Effect of calcium on electrical energy transfer by microtubules.钙对微管电能传递的影响。
J Biol Phys. 2008 Oct;34(5):475-85. doi: 10.1007/s10867-008-9106-z. Epub 2008 Sep 5.
2
A biopolymer transistor: electrical amplification by microtubules.一种生物聚合物晶体管:微管实现的电放大。
Biophys J. 2006 Jun 15;90(12):4639-43. doi: 10.1529/biophysj.105.078915. Epub 2006 Mar 24.
3
The electrical properties of isolated microtubules.孤立微管的电学性质。
Sci Rep. 2023 Jun 22;13(1):10165. doi: 10.1038/s41598-023-36801-1.
4
Brain Microtubule Electrical Oscillations-Empirical Mode Decomposition Analysis.脑微管电振荡-经验模态分解分析。
Cell Mol Neurobiol. 2023 Jul;43(5):2089-2104. doi: 10.1007/s10571-022-01290-9. Epub 2022 Oct 7.
10
Spin probe analysis of microtubules structure and formation.自旋探针分析微管结构与形成。
Arch Biochem Biophys. 2012 Jun 1;522(1):1-8. doi: 10.1016/j.abb.2012.04.002. Epub 2012 Apr 9.

引用本文的文献

3
The electrical properties of isolated microtubules.孤立微管的电学性质。
Sci Rep. 2023 Jun 22;13(1):10165. doi: 10.1038/s41598-023-36801-1.
4
Brain Microtubule Electrical Oscillations-Empirical Mode Decomposition Analysis.脑微管电振荡-经验模态分解分析。
Cell Mol Neurobiol. 2023 Jul;43(5):2089-2104. doi: 10.1007/s10571-022-01290-9. Epub 2022 Oct 7.
5
Electrical Propagation of Condensed and Diffuse Ions Along Actin Filaments.凝聚离子和弥散离子沿肌动蛋白丝的电传播。
J Comput Neurosci. 2022 Feb;50(1):91-107. doi: 10.1007/s10827-021-00795-4. Epub 2021 Aug 15.
9
The quantum mitochondrion and optimal health.量子线粒体与最佳健康状态。
Biochem Soc Trans. 2016 Aug 15;44(4):1101-10. doi: 10.1042/BST20160096.

本文引用的文献

1
"Nanosized voltmeter" enables cellular-wide electric field mapping.“纳米电压表”可实现全细胞电场测绘。
Biophys J. 2007 Aug 15;93(4):1163-74. doi: 10.1529/biophysj.106.092452. Epub 2007 May 18.
3
A biopolymer transistor: electrical amplification by microtubules.一种生物聚合物晶体管:微管实现的电放大。
Biophys J. 2006 Jun 15;90(12):4639-43. doi: 10.1529/biophysj.105.078915. Epub 2006 Mar 24.
5
Protein components for nanodevices.用于纳米器件的蛋白质组件。
Curr Opin Chem Biol. 2005 Dec;9(6):576-84. doi: 10.1016/j.cbpa.2005.10.012. Epub 2005 Oct 28.
6
Electrostatics in computational protein design.计算蛋白质设计中的静电学
Curr Opin Chem Biol. 2005 Dec;9(6):622-6. doi: 10.1016/j.cbpa.2005.10.014. Epub 2005 Oct 28.
10
Microtubule structure at 8 A resolution.8埃分辨率下的微管结构。
Structure. 2002 Oct;10(10):1317-28. doi: 10.1016/s0969-2126(02)00827-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验