Suppr超能文献

细胞穿透肽:它们是如何做到的?

Cell penetrating peptides: how do they do it?

作者信息

Herce Henry D, Garcia Angel E

机构信息

Department of Physics and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

出版信息

J Biol Phys. 2007 Dec;33(5-6):345-56. doi: 10.1007/s10867-008-9074-3. Epub 2008 May 15.

Abstract

Cell penetrating peptides consist of short sequences of amino acids containing a large net positive charge that are able to penetrate almost any cell, carrying with them relatively large cargoes such as proteins, oligonucleotides, and drugs. During the 10 years since their discovery, the question of how they manage to translocate across the membrane has remained unanswered. The main discussion has been centered on whether they follow an energy-independent or an energy-dependent pathway. Recently, we have discovered the possibility of an energy-independent pathway that challenges fundamental concepts associated with protein-membrane interactions (Herce and Garcia, PNAS, 104: 20805 (2007) [1]). It involves the translocation of charged residues across the hydrophobic core of the membrane and the passive diffusion of these highly charged peptides across the membrane through the formation of aqueous toroidal pores. The aim of this review is to discuss the details of the mechanism and interpret some experimental results consistent with this view.

摘要

细胞穿透肽由含有大量净正电荷的短氨基酸序列组成,能够携带蛋白质、寡核苷酸和药物等相对较大的货物穿透几乎任何细胞。自发现以来的10年里,它们如何跨膜转运的问题一直没有答案。主要的讨论集中在它们是遵循能量非依赖途径还是能量依赖途径。最近,我们发现了一种能量非依赖途径的可能性,这对与蛋白质-膜相互作用相关的基本概念提出了挑战(赫塞和加西亚,《美国国家科学院院刊》,104: 20805 (2007) [1])。它涉及带电残基跨膜疏水核心的转运以及这些高电荷肽通过形成水性环形孔跨膜的被动扩散。这篇综述的目的是讨论该机制的细节并解释一些与该观点一致的实验结果。

相似文献

1
Cell penetrating peptides: how do they do it?
J Biol Phys. 2007 Dec;33(5-6):345-56. doi: 10.1007/s10867-008-9074-3. Epub 2008 May 15.
2
Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes.
Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20805-10. doi: 10.1073/pnas.0706574105. Epub 2007 Dec 18.
3
Membrane Crossing and Membranotropic Activity of Cell-Penetrating Peptides: Dangerous Liaisons?
Acc Chem Res. 2017 Dec 19;50(12):2968-2975. doi: 10.1021/acs.accounts.7b00455. Epub 2017 Nov 27.
4
Cell-penetrating peptides: mechanism and kinetics of cargo delivery.
Adv Drug Deliv Rev. 2005 Feb 28;57(4):529-45. doi: 10.1016/j.addr.2004.10.010. Epub 2005 Jan 22.
5
Charged Antimicrobial Peptides Can Translocate across Membranes without Forming Channel-like Pores.
Biophys J. 2017 Jul 11;113(1):73-81. doi: 10.1016/j.bpj.2017.04.056.
6
Advances in Molecular Understanding of α-Helical Membrane-Active Peptides.
Acc Chem Res. 2021 May 4;54(9):2196-2204. doi: 10.1021/acs.accounts.1c00047. Epub 2021 Apr 12.
8
Insights into membrane translocation of the cell-penetrating peptide pVEC from molecular dynamics calculations.
J Biomol Struct Dyn. 2016 Nov;34(11):2387-98. doi: 10.1080/07391102.2015.1117396. Epub 2016 Mar 17.
10
Uptake Mechanism of Cell-Penetrating Peptides.
Adv Exp Med Biol. 2017;1030:255-264. doi: 10.1007/978-3-319-66095-0_11.

引用本文的文献

1
Cell-penetrating peptide-grafted AAV2 capsids for improved retinal delivery via intravitreal injection.
Mol Ther Methods Clin Dev. 2025 Feb 3;33(1):101426. doi: 10.1016/j.omtm.2025.101426. eCollection 2025 Mar 13.
2
Interactions and Transport of a Bioconjugated Peptide Targeting the Mitomembrane.
Bioconjug Chem. 2024 Mar 20;35(3):371-380. doi: 10.1021/acs.bioconjchem.3c00561. Epub 2024 Feb 25.
3
Molecular Dynamics Simulations of Drug-Conjugated Cell-Penetrating Peptides.
Pharmaceuticals (Basel). 2023 Sep 5;16(9):1251. doi: 10.3390/ph16091251.
4
5
Design of Peptides for Membrane Insertion: The Critical Role of Charge Separation.
J Phys Chem B. 2022 Sep 1;126(34):6454-6463. doi: 10.1021/acs.jpcb.2c04615. Epub 2022 Aug 23.
6
Importance of two-dimensional cation clusters induced by protein folding in intrinsic intracellular membrane permeability.
RSC Chem Biol. 2022 Jul 13;3(8):1076-1084. doi: 10.1039/d2cb00098a. eCollection 2022 Aug 3.
7
Cell-penetrating peptide for targeted macromolecule delivery into plant chloroplasts.
Appl Microbiol Biotechnol. 2022 Aug;106(13-16):5249-5259. doi: 10.1007/s00253-022-12053-3. Epub 2022 Jul 12.
10
Bioelectricity for Drug Delivery: The Promise of Cationic Therapeutics.
Bioelectricity. 2020 Jun 17;2(2):68-81. doi: 10.1089/bioe.2020.0012. Epub 2020 May 21.

本文引用的文献

3
Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes.
Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20805-10. doi: 10.1073/pnas.0706574105. Epub 2007 Dec 18.
4
Permeation of a beta-heptapeptide derivative across phospholipid bilayers.
Biochim Biophys Acta. 2007 Nov;1768(11):2726-36. doi: 10.1016/j.bbamem.2007.07.011. Epub 2007 Jul 26.
5
6
A novel cell-penetrating peptide, M918, for efficient delivery of proteins and peptide nucleic acids.
Mol Ther. 2007 Oct;15(10):1820-6. doi: 10.1038/sj.mt.6300255. Epub 2007 Jul 10.
7
Single-molecule imaging of the association of the cell-penetrating peptide Pep-1 to model membranes.
Biochemistry. 2007 Jul 10;46(27):7963-72. doi: 10.1021/bi700505h. Epub 2007 Jun 13.
8
Counterion-mediated membrane penetration: cationic cell-penetrating peptides overcome Born energy barrier by ion-pairing with phospholipids.
Biochim Biophys Acta. 2007 Jun;1768(6):1550-8. doi: 10.1016/j.bbamem.2007.03.004. Epub 2007 Mar 19.
9
The electrostatic surface term: (I) periodic systems.
J Chem Phys. 2007 Mar 28;126(12):124106. doi: 10.1063/1.2714527.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验