Suppr超能文献

超越学习皮层的平均场模型:二阶统计量。

Going beyond a mean-field model for the learning cortex: second-order statistics.

作者信息

Wilson M T, Steyn-Ross Moira L, Steyn-Ross D A, Sleigh J W

机构信息

Department of Engineering, University of Waikato, Hamilton 3240, New Zealand.

出版信息

J Biol Phys. 2007 Jun;33(3):213-46. doi: 10.1007/s10867-008-9056-5. Epub 2008 Mar 18.

Abstract

Mean-field models of the cortex have been used successfully to interpret the origin of features on the electroencephalogram under situations such as sleep, anesthesia, and seizures. In a mean-field scheme, dynamic changes in synaptic weights can be considered through fluctuation-based Hebbian learning rules. However, because such implementations deal with population-averaged properties, they are not well suited to memory and learning applications where individual synaptic weights can be important. We demonstrate that, through an extended system of equations, the mean-field models can be developed further to look at higher-order statistics, in particular, the distribution of synaptic weights within a cortical column. This allows us to make some general conclusions on memory through a mean-field scheme. Specifically, we expect large changes in the standard deviation of the distribution of synaptic weights when fluctuation in the mean soma potentials are large, such as during the transitions between the "up" and "down" states of slow-wave sleep. Moreover, a cortex that has low structure in its neuronal connections is most likely to decrease its standard deviation in the weights of excitatory to excitatory synapses, relative to the square of the mean, whereas a cortex with strongly patterned connections is most likely to increase this measure. This suggests that fluctuations are used to condense the coding of strong (presumably useful) memories into fewer, but dynamic, neuron connections, while at the same time removing weaker (less useful) memories.

摘要

皮质的平均场模型已成功用于解释睡眠、麻醉和癫痫发作等情况下脑电图特征的起源。在平均场方案中,可以通过基于波动的赫布学习规则来考虑突触权重的动态变化。然而,由于此类实现处理的是群体平均特性,它们不太适合个体突触权重可能很重要的记忆和学习应用。我们证明,通过扩展方程组,平均场模型可以进一步发展以研究高阶统计量,特别是皮质柱内突触权重的分布。这使我们能够通过平均场方案对记忆得出一些一般性结论。具体而言,我们预计当平均体细胞电位波动较大时,例如在慢波睡眠的“上”和“下”状态之间转换期间,突触权重分布的标准差会有很大变化。此外,神经元连接结构较低的皮质相对于均值的平方,其兴奋性到兴奋性突触权重的标准差最有可能减小,而连接模式强烈的皮质最有可能增加这一指标。这表明波动被用于将强(大概是有用的)记忆的编码压缩到更少但动态的神经元连接中,同时去除较弱(不太有用)的记忆。

相似文献

3
Proposed mechanism for learning and memory erasure in a white-noise-driven sleeping cortex.白噪声驱动的睡眠皮层中学习和记忆消除的潜在机制。
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Dec;72(6 Pt 1):061910. doi: 10.1103/PhysRevE.72.061910. Epub 2005 Dec 16.
4
The K-complex and slow oscillation in terms of a mean-field cortical model.基于平均场皮质模型的K复合波与慢波振荡
J Comput Neurosci. 2006 Dec;21(3):243-57. doi: 10.1007/s10827-006-7948-6. Epub 2006 Aug 14.
5
Salient features of synaptic organisation in the cerebral cortex.大脑皮质突触组织的显著特征。
Brain Res Brain Res Rev. 1998 May;26(2-3):113-35. doi: 10.1016/s0165-0173(97)00061-1.
6
Fast Learning with Weak Synaptic Plasticity.基于弱突触可塑性的快速学习
J Neurosci. 2015 Sep 30;35(39):13351-62. doi: 10.1523/JNEUROSCI.0607-15.2015.
10
Synaptic encoding of temporal contiguity.突触对时间连续性的编码。
Front Comput Neurosci. 2013 Apr 12;7:32. doi: 10.3389/fncom.2013.00032. eCollection 2013.

本文引用的文献

1
The sleep cycle modelled as a cortical phase transition.睡眠周期被模拟为一种皮质相变。
J Biol Phys. 2005 Dec;31(3-4):547-69. doi: 10.1007/s10867-005-1285-2.
2
Recurrent neuronal circuits in the neocortex.新皮层中的循环神经元回路。
Curr Biol. 2007 Jul 3;17(13):R496-500. doi: 10.1016/j.cub.2007.04.024.
4
Boosting slow oscillations during sleep potentiates memory.在睡眠期间增强慢波振荡可增强记忆。
Nature. 2006 Nov 30;444(7119):610-3. doi: 10.1038/nature05278. Epub 2006 Nov 5.
6
The K-complex and slow oscillation in terms of a mean-field cortical model.基于平均场皮质模型的K复合波与慢波振荡
J Comput Neurosci. 2006 Dec;21(3):243-57. doi: 10.1007/s10827-006-7948-6. Epub 2006 Aug 14.
8
Dynamic functional tuning of nonlinear cortical networks.非线性皮层网络的动态功能调谐
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Mar;73(3 Pt 1):031903. doi: 10.1103/PhysRevE.73.031903. Epub 2006 Mar 3.
9
Proposed mechanism for learning and memory erasure in a white-noise-driven sleeping cortex.白噪声驱动的睡眠皮层中学习和记忆消除的潜在机制。
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Dec;72(6 Pt 1):061910. doi: 10.1103/PhysRevE.72.061910. Epub 2005 Dec 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验