Suppr超能文献

基于弱突触可塑性的快速学习

Fast Learning with Weak Synaptic Plasticity.

作者信息

Yger Pierre, Stimberg Marcel, Brette Romain

机构信息

Institut d'Etudes de la Cognition, Ecole Normale Supérieure, 75005 Paris, France, Sorbonne Université, UPMC Université Paris 06 UMRS968, 75006 Paris, France, and Institut de la Vision, INSERM U968, CNRS UMR7210, 75012 Paris, France

Sorbonne Université, UPMC Université Paris 06 UMRS968, 75006 Paris, France, and Institut de la Vision, INSERM U968, CNRS UMR7210, 75012 Paris, France.

出版信息

J Neurosci. 2015 Sep 30;35(39):13351-62. doi: 10.1523/JNEUROSCI.0607-15.2015.

Abstract

New sensory stimuli can be learned with a single or a few presentations. Similarly, the responses of cortical neurons to a stimulus have been shown to increase reliably after just a few repetitions. Long-term memory is thought to be mediated by synaptic plasticity, but in vitro experiments in cortical cells typically show very small changes in synaptic strength after a pair of presynaptic and postsynaptic spikes. Thus, it is traditionally thought that fast learning requires stronger synaptic changes, possibly because of neuromodulation. Here we show theoretically that weak synaptic plasticity can, in fact, support fast learning, because of the large number of synapses N onto a cortical neuron. In the fluctuation-driven regime characteristic of cortical neurons in vivo, the size of membrane potential fluctuations grows only as √N, whereas a single output spike leads to potentiation of a number of synapses proportional to N. Therefore, the relative effect of a single spike on synaptic potentiation grows as √N. This leverage effect requires precise spike timing. Thus, the large number of synapses onto cortical neurons allows fast learning with very small synaptic changes. Significance statement: Long-term memory is thought to rely on the strengthening of coactive synapses. This physiological mechanism is generally considered to be very gradual, and yet new sensory stimuli can be learned with just a few presentations. Here we show theoretically that this apparent paradox can be solved when there is a tight balance between excitatory and inhibitory input. In this case, small synaptic modifications applied to the many synapses onto a given neuron disrupt that balance and produce a large effect even for modifications induced by a single stimulus. This effect makes fast learning possible with small synaptic changes and reconciles physiological and behavioral observations.

摘要

新的感觉刺激通过单次或几次呈现就能被学习。同样,皮层神经元对刺激的反应在仅仅几次重复后就已被证明会可靠地增强。长期记忆被认为是由突触可塑性介导的,但在皮层细胞的体外实验中,一对突触前和突触后尖峰之后通常显示突触强度的变化非常小。因此,传统上认为快速学习需要更强的突触变化,可能是由于神经调节。在这里,我们从理论上表明,由于皮层神经元上存在大量的突触N,弱突触可塑性实际上可以支持快速学习。在体内皮层神经元特有的波动驱动状态下,膜电位波动的大小仅随√N增长,而单个输出尖峰则会导致与N成比例的一些突触增强。因此,单个尖峰对突触增强的相对效应随√N增长。这种杠杆效应需要精确的尖峰时间。因此,皮层神经元上大量的突触允许通过非常小的突触变化进行快速学习。意义声明:长期记忆被认为依赖于共同激活突触的增强。这种生理机制通常被认为是非常渐进的,然而新的感觉刺激通过仅仅几次呈现就能被学习。在这里,我们从理论上表明,当兴奋性和抑制性输入之间存在紧密平衡时,这个明显的悖论可以得到解决。在这种情况下,应用于给定神经元上许多突触的小突触修饰会破坏这种平衡,即使对于由单个刺激引起的修饰也会产生很大的影响。这种效应使得通过小的突触变化进行快速学习成为可能,并调和了生理和行为观察结果。

相似文献

1
Fast Learning with Weak Synaptic Plasticity.基于弱突触可塑性的快速学习
J Neurosci. 2015 Sep 30;35(39):13351-62. doi: 10.1523/JNEUROSCI.0607-15.2015.
2
A computational framework for cortical learning.一种用于皮层学习的计算框架。
Biol Cybern. 2004 Jun;90(6):400-9. doi: 10.1007/s00422-004-0487-1. Epub 2004 Jul 22.

引用本文的文献

2
Synaptic self-organization of spatio-temporal pattern selectivity.时空模式选择性的突触自组织。
PLoS Comput Biol. 2023 Feb 13;19(2):e1010876. doi: 10.1371/journal.pcbi.1010876. eCollection 2023 Feb.
9
A neuromechanistic model for rhythmic beat generation.神经机械节奏生成模型。
PLoS Comput Biol. 2019 May 9;15(5):e1006450. doi: 10.1371/journal.pcbi.1006450. eCollection 2019 May.

本文引用的文献

3
Visual stimuli recruit intrinsically generated cortical ensembles.视觉刺激会募集内在产生的皮质神经元集群。
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):E4053-61. doi: 10.1073/pnas.1406077111. Epub 2014 Sep 8.
4
Engineering a memory with LTD and LTP.利用长时程抑制和长时程增强构建记忆。
Nature. 2014 Jul 17;511(7509):348-52. doi: 10.1038/nature13294. Epub 2014 Jun 1.
6
The Convallis rule for unsupervised learning in cortical networks.皮层网络中无监督学习的康瓦利斯法则。
PLoS Comput Biol. 2013 Oct;9(10):e1003272. doi: 10.1371/journal.pcbi.1003272. Epub 2013 Oct 24.
9
The rapid emergence of stimulus specific perceptual learning.刺激特异性知觉学习的快速出现。
Front Psychol. 2012 Jul 5;3:226. doi: 10.3389/fpsyg.2012.00226. eCollection 2012.
10
Stable learning in stochastic network states.随机网络状态下的稳定学习。
J Neurosci. 2012 Jan 4;32(1):194-214. doi: 10.1523/JNEUROSCI.2496-11.2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验