Suppr超能文献

使用轮廓波改进二维凝胶图像去噪

Improving 2-DE gel image denoising using contourlets.

作者信息

Tsakanikas Panagiotis, Manolakos Elias S

机构信息

Department of Informatics and Telecommunications, University of Athens, Greece.

出版信息

Proteomics. 2009 Aug;9(15):3877-88. doi: 10.1002/pmic.200701027.

Abstract

One of the most commonly used methods for protein separation is 2-DE. After 2-DE gel scanning, images with a plethora of spot features emerge that are usually contaminated by inherent noise. The objective of the denoising process is to remove noise to the extent that the true spots are recovered correctly and accurately i.e. without introducing distortions leading to the detection of false-spot features. In this paper we propose and justify the use of the contourlet transform as a tool for 2-DE gel images denoising. We compare its effectiveness with state-of-the-art methods such as wavelets-based multiresolution image analysis and spatial filtering. We show that contourlets not only achieve better average S/N performance than wavelets and spatial filters, but also preserve better spot boundaries and faint spots and alter less the intensities of informative spot features, leading to more accurate spot volume estimation and more reliable spot detection, operations that are essential to differential expression proteomics for biomarkers discovery.

摘要

蛋白质分离最常用的方法之一是二维电泳(2-DE)。二维电泳凝胶扫描后,会出现具有大量斑点特征的图像,这些图像通常会受到固有噪声的污染。去噪过程的目的是在正确且准确地恢复真实斑点的程度上去除噪声,即不引入导致检测到假斑点特征的失真。在本文中,我们提出并论证了使用轮廓波变换作为二维电泳凝胶图像去噪的工具。我们将其有效性与基于小波的多分辨率图像分析和空间滤波等先进方法进行比较。我们表明,轮廓波不仅比小波和空间滤波器具有更好的平均信噪比性能,而且能更好地保留斑点边界和微弱斑点,对信息丰富的斑点特征强度改变较小,从而实现更准确的斑点体积估计和更可靠的斑点检测,这些操作对于用于生物标志物发现的差异表达蛋白质组学至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验