Suppr超能文献

使用机器学习方法检测和定量 2-DE 凝胶图像中的蛋白质斑点。

Protein spot detection and quantification in 2-DE gel images using machine-learning methods.

机构信息

Department of Informatics and Telecommunications, University of Athens, Athens, Greece.

出版信息

Proteomics. 2011 May;11(10):2038-50. doi: 10.1002/pmic.201000601. Epub 2011 Apr 18.

Abstract

Two-dimensional gel electrophoresis (2-DE) is the most established protein separation method used in expression proteomics. Despite the existence of sophisticated software tools, 2-DE gel image analysis still remains a serious bottleneck. The low accuracies of commercial software packages and the extensive manual calibration that they often require for acceptable results show that we are far from achieving the goal of a fully automated and reliable, high-throughput gel processing system. We present a novel spot detection and quantification methodology which draws heavily from unsupervised machine-learning methods. Using the proposed hierarchical machine learning-based segmentation methodology reduces both the number of faint spots missed (improves sensitivity) and the number of extraneous spots introduced (improves precision). The detection and quantification performance has been thoroughly evaluated and is shown to compare favorably (higher F-measure) to a commercially available software package (PDQuest). The whole image analysis pipeline that we have developed is fully automated and can be used for high-throughput proteomics analysis since it does not require any manual intervention for recalibration every time a new 2-DE gel image is to be analyzed. Furthermore, it can be easily parallelized for high performance and also applied without any modification to prealigned group average gels.

摘要

二维凝胶电泳(2-DE)是表达蛋白质组学中使用最广泛的蛋白质分离方法。尽管存在复杂的软件工具,但 2-DE 凝胶图像分析仍然是一个严重的瓶颈。商业软件包的准确性低,并且通常需要广泛的手动校准才能获得可接受的结果,这表明我们远未实现完全自动化和可靠的高通量凝胶处理系统的目标。我们提出了一种新的斑点检测和定量方法,该方法大量借鉴了无监督机器学习方法。使用所提出的基于分层机器学习的分割方法,减少了错过的微弱斑点的数量(提高了灵敏度)和引入的多余斑点的数量(提高了精度)。检测和定量性能已得到彻底评估,并与商业上可用的软件包(PDQuest)相比具有优势(更高的 F 度量)。我们开发的整个图像分析管道是完全自动化的,可以用于高通量蛋白质组学分析,因为它不需要在每次分析新的 2-DE 凝胶图像时进行任何手动重新校准。此外,它可以轻松进行并行处理以实现高性能,并且无需任何修改即可应用于预对准的组平均凝胶。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验