Yan Hai-Dun, Villalobos Claudio, Andrade Rodrigo
Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48230, USA.
J Neurosci. 2009 Aug 12;29(32):10038-46. doi: 10.1523/JNEUROSCI.1042-09.2009.
Activation of muscarinic cholinergic receptors on pyramidal cells of the cerebral cortex induces the appearance of a slow afterdepolarization that can sustain autonomous spiking after a brief excitatory stimulus. Accordingly, this phenomenon has been hypothesized to allow for the transient storage of memory traces in neuronal networks. Here we investigated the molecular basis underlying the muscarinic receptor-induced afterdepolarization using molecular biological and electrophysiological strategies. We find that the ability of muscarinic receptors to induce the inward aftercurrent underlying the slow afterdepolarization is inhibited by expression of a Galpha(q-11) dominant negative and is also markedly reduced in a phospholipase C beta1 (PLCbeta1) knock-out mouse. Furthermore, we show, using a genetically encoded biosensor, that activation of muscarinic receptor induces the breakdown of phosphatidylinositol 4,5-bisphosphate in pyramidal cells. These results indicate that the Galpha(q-11)/PLCbeta1 cascade plays a key role in the ability of muscarinic receptors to signal the inward aftercurrent. We have shown previously that the muscarinic afterdepolarization is mediated by a calcium-activated nonselective cation current, suggesting the possible involvement of TRPC channels. We find that expression of a TRPC dominant negative inhibits, and overexpression of wild-type TRPC5 or TRPC6 enhances, the amplitude of the muscarinic receptor-induced inward aftercurrent. Furthermore, we find that coexpression of TRPC5 and T-type calcium channels is sufficient to reconstitute a muscarinic receptor-activated inward aftercurrent in human embryonic kidney HEK-293 cells. These results indicate that TRPC channels mediate the muscarinic receptor-induced slow afterdepolarization seen in pyramidal cells of the cerebral cortex and suggest a possible role for TRPC channels in mnemonic processes.
大脑皮层锥体细胞上毒蕈碱型胆碱能受体的激活会诱导出现缓慢的去极化后电位,这种电位在短暂的兴奋性刺激后能够维持自主放电。因此,有人推测这种现象可能允许记忆痕迹在神经网络中进行短暂存储。在此,我们运用分子生物学和电生理学方法,研究了毒蕈碱受体诱导的去极化后电位的分子基础。我们发现,毒蕈碱受体诱导缓慢去极化后电位所依赖的内向后电流的能力,会受到Gαq-11显性负性蛋白表达的抑制,并且在磷脂酶Cβ1(PLCβ1)基因敲除小鼠中也显著降低。此外,我们使用一种基因编码的生物传感器表明,毒蕈碱受体的激活会诱导锥体细胞中磷脂酰肌醇4,5-二磷酸的分解。这些结果表明,Gαq-11/PLCβ1级联反应在毒蕈碱受体产生内向后电流的信号传导能力中起关键作用。我们之前已经表明,毒蕈碱去极化后电位是由钙激活的非选择性阳离子电流介导的,这表明瞬时受体电位通道(TRPC)可能参与其中。我们发现,TRPC显性负性蛋白的表达会抑制毒蕈碱受体诱导的内向后电流幅度,而野生型TRPC5或TRPC6的过表达则会增强该幅度。此外,我们发现TRPC5和T型钙通道的共表达足以在人胚肾HEK-293细胞中重建毒蕈碱受体激活的内向后电流。这些结果表明,TRPC通道介导了大脑皮层锥体细胞中所见的毒蕈碱受体诱导的缓慢去极化后电位,并提示TRPC通道在记忆过程中可能发挥作用。