Suppr超能文献

贝叶斯层次模型在使用来自整群随机试验数据的成本效益分析中的应用。

Bayesian hierarchical models for cost-effectiveness analyses that use data from cluster randomized trials.

机构信息

Health Services Research Unit, London School of Hygiene and Tropical Medicine, London, UK.

出版信息

Med Decis Making. 2010 Mar-Apr;30(2):163-75. doi: 10.1177/0272989X09341752. Epub 2009 Aug 12.

Abstract

Cost-effectiveness analyses (CEA) may be undertaken alongside cluster randomized trials (CRTs) where randomization is at the level of the cluster (for example, the hospital or primary care provider) rather than the individual. Costs (and outcomes) within clusters may be correlated so that the assumption made by standard bivariate regression models, that observations are independent, is incorrect. This study develops a flexible modeling framework to acknowledge the clustering in CEA that use CRTs. The authors extend previous Bayesian bivariate models for CEA of multicenter trials to recognize the specific form of clustering in CRTs. They develop new Bayesian hierarchical models (BHMs) that allow mean costs and outcomes, and also variances, to differ across clusters. They illustrate how each model can be applied using data from a large (1732 cases, 70 primary care providers) CRT evaluating alternative interventions for reducing postnatal depression. The analyses compare cost-effectiveness estimates from BHMs with standard bivariate regression models that ignore the data hierarchy. The BHMs show high levels of cost heterogeneity across clusters (intracluster correlation coefficient, 0.17). Compared with standard regression models, the BHMs yield substantially increased uncertainty surrounding the cost-effectiveness estimates, and altered point estimates. The authors conclude that ignoring clustering can lead to incorrect inferences. The BHMs that they present offer a flexible modeling framework that can be applied more generally to CEA that use CRTs.

摘要

成本效益分析(CEA)可以与集群随机试验(CRTs)一起进行,其中随机化是在集群级别(例如,医院或初级保健提供者)而不是个体级别进行的。集群内的成本(和结果)可能相关,因此标准双变量回归模型所假设的观察结果是独立的,这是不正确的。本研究开发了一个灵活的建模框架,以承认使用 CRT 的 CEA 中的聚类。作者扩展了以前用于多中心试验 CEA 的贝叶斯双变量模型,以认识到 CRT 中特定形式的聚类。他们开发了新的贝叶斯层次模型(BHMs),允许均值成本和结果,以及方差,在集群之间有所不同。他们说明了如何使用评估减少产后抑郁症替代干预措施的大型(1732 例,70 个初级保健提供者)CRT 数据来应用每种模型。分析比较了 BHMs 与忽略数据层次结构的标准双变量回归模型的成本效益估计。BHMs 显示出集群之间高度的成本异质性(簇内相关系数,0.17)。与标准回归模型相比,BHMs 大大增加了成本效益估计的不确定性,并改变了点估计。作者得出结论,忽略聚类可能导致不正确的推断。他们提出的 BHMs 提供了一个灵活的建模框架,可更普遍地应用于使用 CRT 的 CEA。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验