Stroud James C, Oltman Amy, Han Aidong, Bates Darren L, Chen Lin
Molecular and Computational Biology, Department of Biological Sciences, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089-2910, USA.
J Mol Biol. 2009 Oct 16;393(1):98-112. doi: 10.1016/j.jmb.2009.08.023. Epub 2009 Aug 14.
The activation and latency of human immunodeficiency virus type 1 (HIV-1) are tightly controlled by the transcriptional activity of its long terminal repeat (LTR) region. The LTR is regulated by viral proteins as well as host factors, including the nuclear factor kappaB (NF-kappaB) that becomes activated in virus-infected cells. The two tandem NF-kappaB sites of the LTR are among the most highly conserved sequence elements of the HIV-1 genome. Puzzlingly, these sites are arranged in a manner that seems to preclude simultaneous binding of both sites by NF-kappaB, although previous biochemical work suggests otherwise. Here, we have determined the crystal structure of p50:RelA bound to the tandem kappaB element of the HIV-1 LTR as a dimeric dimer, providing direct structural evidence that NF-kappaB can occupy both sites simultaneously. The two p50:RelA dimers bind the adjacent kappaB sites and interact through a protein contact that is accommodated by DNA bending. The two dimers clamp DNA from opposite faces of the double helix and form a topological trap of the bound DNA. Consistent with these structural features, our biochemical analyses indicate that p50:RelA binds the HIV-1 LTR tandem kappaB sites with an apparent anti-cooperativity but enhanced kinetic stability. The slow on and off rates we observe may be relevant to viral latency because viral activation requires sustained NF-kappaB activation. Furthermore, our work demonstrates that the specific arrangement of the two kappaB sites on the HIV-1 LTR can modulate the assembly kinetics of the higher-order NF-kappaB complex on the viral promoter. This phenomenon is unlikely restricted to the HIV-1 LTR but probably represents a general mechanism for the function of composite DNA elements in transcription.
1型人类免疫缺陷病毒(HIV-1)的激活和潜伏期受到其长末端重复序列(LTR)区域转录活性的严格控制。LTR受病毒蛋白以及宿主因子调控,包括在病毒感染细胞中被激活的核因子κB(NF-κB)。LTR的两个串联NF-κB位点是HIV-1基因组中最保守的序列元件之一。令人困惑的是,这些位点的排列方式似乎排除了NF-κB同时结合两个位点的可能性,尽管先前的生化研究表明情况并非如此。在这里,我们确定了与HIV-1 LTR的串联κB元件结合的p50:RelA的晶体结构,其为二聚体二聚体,提供了直接的结构证据,证明NF-κB可以同时占据两个位点。两个p50:RelA二聚体结合相邻的κB位点,并通过DNA弯曲所容纳的蛋白质接触相互作用。这两个二聚体从双螺旋的相对面夹住DNA,并形成结合DNA的拓扑陷阱。与这些结构特征一致,我们的生化分析表明,p50:RelA以明显的反协同性但增强的动力学稳定性结合HIV-1 LTR串联κB位点。我们观察到的缓慢的结合和解离速率可能与病毒潜伏期相关,因为病毒激活需要持续的NF-κB激活。此外,我们的工作表明,HIV-1 LTR上两个κB位点的特定排列可以调节病毒启动子上高阶NF-κB复合物的组装动力学。这种现象不太可能仅限于HIV-1 LTR,而可能代表了复合DNA元件在转录中发挥功能的一般机制。