Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
Protein Sci. 2021 Sep;30(9):1818-1832. doi: 10.1002/pro.4134.
The Rel proteins of the NF-κB complex comprise one of the most investigated transcription factor families, forming a variety of hetero- or homodimers. Nevertheless, very little is known about the fundamental kinetics of NF-κB complex assembly, or the inter-conversion potential of dimerised Rel subunits. Here, we examined an unexplored aspect of NF-κB dynamics, focusing on the dissociation and reassociation of the canonical p50 and p65 Rel subunits and their ability to form new hetero- or homodimers. We employed a soluble expression system to enable the facile production of NF-κB Rel subunits, and verified these proteins display canonical NF-κB nucleic acid binding properties. Using a combination of biophysical techniques, we demonstrated that, at physiological temperatures, homodimeric Rel complexes routinely exchange subunits with a half-life of less than 10 min. In contrast, we found a dramatic preference for the formation of the p50/p65 heterodimer, which demonstrated a kinetic stability of at least an order of magnitude greater than either homodimer. These results suggest that specific DNA targets of either the p50 or p65 homodimers can only be targeted when these subunits are expressed exclusively, or with the intervention of additional post-translational modifications. Together, this work implies a new model of how cells can modulate NF-κB activity by fine-tuning the relative proportions of the p50 and p65 proteins, as well as their time of expression. This work thus provides a new quantitative interpretation of Rel dimer distribution in the cell, particularly for those who are developing mathematical models of NF-κB activity.
NF-κB 复合物的 Rel 蛋白是研究最多的转录因子家族之一,形成多种异源或同源二聚体。然而,对于 NF-κB 复合物组装的基本动力学,或二聚化 Rel 亚基的相互转化潜力,我们知之甚少。在这里,我们研究了 NF-κB 动力学的一个未被探索的方面,重点关注经典的 p50 和 p65 Rel 亚基的解离和再组装及其形成新的异源或同源二聚体的能力。我们采用可溶表达系统来方便地生产 NF-κB Rel 亚基,并验证这些蛋白显示经典 NF-κB 核酸结合特性。使用多种物理化学技术,我们证明在生理温度下,同源二聚体 Rel 复合物通常以半衰期小于 10 分钟的速度交换亚基。相比之下,我们发现 p50/p65 异源二聚体的形成有明显的偏好,其动力学稳定性至少比任何同源二聚体高一个数量级。这些结果表明,只有当这些亚基单独表达或存在其他翻译后修饰时,p50 或 p65 同源二聚体的特定 DNA 靶标才能被靶向。总之,这项工作提出了一种新的模型,即细胞如何通过精细调节 p50 和 p65 蛋白的相对比例及其表达时间来调节 NF-κB 活性。这项工作为细胞中 Rel 二聚体分布提供了一个新的定量解释,特别是对于那些正在开发 NF-κB 活性数学模型的人。