Suppr超能文献

重建色彩 X 射线衍射成像——一种新颖的 TEDDI 成像方法。

Reconstructive colour X-ray diffraction imaging--a novel TEDDI imaging method.

机构信息

Department of Chemistry, University College London, 20 Gordon Street, London, UK WC1H 0AJ.

出版信息

Analyst. 2009 Sep;134(9):1802-7. doi: 10.1039/b901726g. Epub 2009 Jun 26.

Abstract

Tomographic Energy-Dispersive Diffraction Imaging (TEDDI) enables a unique non-destructive mapping of the interior of bulk objects, exploiting the full range of X-ray signals (diffraction, fluorescence, scattering, background) recorded. By analogy to optical imaging, a wide variety of features (structure, composition, orientation, strain) dispersed in X-ray wavelengths can be extracted and colour-coded to aid interpretation. The ultimate aim of this approach is to realise real-time high-definition colour X-ray diffraction imaging, on the timescales of seconds, so that one will be able to 'look inside' optically opaque apparatus and unravel the space/time-evolution of the materials chemistry taking place. This will impact strongly on many fields of science but there are currently two barriers to this goal: speed of data acquisition (a 2D scan currently takes minutes to hours) and loss of image definition through spatial distortion of the X-ray sampling volume. Here we present a data-collection scenario and reconstruction routine which overcomes the latter barrier and which has been successfully applied to a phantom test object and to real materials systems such as a carbonating cement block. These procedures are immediately transferable to the promising technology of multi-energy-dispersive-detector-arrays which are planned to deliver the other breakthrough, that of one-two orders of magnitude improvement in data acquisition rates, that will be needed to realise real-time high-definition colour X-ray diffraction imaging.

摘要

层析能谱衍射成像(TEDDI)通过利用所记录的全范围 X 射线信号(衍射、荧光、散射、本底),实现了对块状物体内部的独特无损映射。通过类比光学成像,可以提取和编码各种分散在 X 射线波长内的特征(结构、组成、取向、应变),以帮助解释。这种方法的最终目标是实现实时高清晰度彩色 X 射线衍射成像,其时间尺度为秒,以便能够“透视”不透明的仪器,并揭示发生的材料化学的时空演化。这将对许多科学领域产生重大影响,但目前实现这一目标存在两个障碍:数据采集速度(二维扫描目前需要几分钟到几个小时),以及 X 射线采样体积的空间变形导致图像清晰度的损失。在这里,我们提出了一种克服后一种障碍的数据采集方案和重建程序,并已成功应用于一个模拟测试物体和真实材料系统,如碳酸化水泥块。这些程序可以立即转移到多能谱探测器阵列这一很有前途的技术上,该技术计划在数据采集速率上取得一两个数量级的突破,这将是实现实时高清晰度彩色 X 射线衍射成像所必需的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验