Huang Su-Yun, Yeh Yi-Ren, Eguchi Shinto
Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.
Neural Comput. 2009 Nov;21(11):3179-213. doi: 10.1162/neco.2009.02-08-706.
This letter discusses the robustness issue of kernel principal component analysis. A class of new robust procedures is proposed based on eigenvalue decomposition of weighted covariance. The proposed procedures will place less weight on deviant patterns and thus be more resistant to data contamination and model deviation. Theoretical influence functions are derived, and numerical examples are presented as well. Both theoretical and numerical results indicate that the proposed robust method outperforms the conventional approach in the sense of being less sensitive to outliers. Our robust method and results also apply to functional principal component analysis.
这封信讨论了核主成分分析的稳健性问题。基于加权协方差的特征值分解,提出了一类新的稳健方法。所提出的方法将对异常模式赋予较小的权重,从而对数据污染和模型偏差更具抵抗力。推导了理论影响函数,并给出了数值例子。理论和数值结果均表明,所提出的稳健方法在对异常值不太敏感的意义上优于传统方法。我们的稳健方法和结果也适用于函数主成分分析。