IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Mar;68(3):510-525. doi: 10.1109/TUFFC.2020.3013268. Epub 2021 Feb 25.
Echocardiographic image sequences are frequently corrupted by quasi-static artifacts ("clutter") superimposed on the moving myocardium. Conventionally, localized blind source separation methods exploiting local correlation in the clutter have proven effective in the suppression of these artifacts. These methods use the spectral characteristics to distinguish the clutter from tissue and background noise and are applied exhaustively over the data set. The exhaustive application results in high computational complexity and a loss of useful tissue signal. In this article, we develop a closed-loop algorithm in which the clutter is first detected using an adaptively determined weighting function and then removed using low-rank estimation methods. We show that our method is adaptable to different low-rank estimators, by presenting two such estimators: sparse coding in the principal component domain and nuclear norm minimization. We compare the performance of our proposed method (CLEAR) with two methods: singular value filtering (SVF) and morphological component analysis (MCA). The performance was quantified in silico by measuring the error with respect to a known "ground truth" data set with no clutter for different combinations of moving clutter and tissue. Our method retains more tissue with a lower error of 3.88 ± 0.093 dB (sparse coding) and 3.47 ± 0.78 (nuclear norm) compared with the benchmark methods 8.5 ± 0.7 dB (SVF) and 9.3 ± 0.5 dB (MCA) particularly in instances where the rate of tissue motion and artifact motion is small (≤0.25 periods of center frequency per frame) while producing comparable clutter reduction performance. CLEAR was also validated in vivo by quantifying the tracking error over the cardiac cycle on five mouse heart data sets with synthetic clutter. CLEAR reduced the error by approximately 50%, compared with 25% for the SVF.
超声心动图图像序列经常受到运动心肌上叠加的准静态伪影(“杂波”)的干扰。传统上,利用杂波中的局部相关性的局部盲源分离方法已被证明在抑制这些伪影方面非常有效。这些方法利用频谱特征将杂波与组织和背景噪声区分开来,并在整个数据集上进行广泛应用。这种广泛应用会导致计算复杂度高,并且会损失有用的组织信号。在本文中,我们开发了一种闭环算法,其中首先使用自适应确定的加权函数检测杂波,然后使用低秩估计方法去除杂波。我们通过提出两种这样的估计器:主成分域中的稀疏编码和核范数最小化,表明我们的方法可以适应不同的低秩估计器。我们将所提出的方法(CLEAR)的性能与两种方法进行了比较:奇异值滤波(SVF)和形态分量分析(MCA)。通过在没有杂波的情况下针对不同的运动杂波和组织组合测量相对于已知“真实数据”的误差,在计算机上对性能进行了量化。与基准方法 8.5 ± 0.7 dB(SVF)和 9.3 ± 0.5 dB(MCA)相比,我们的方法保留了更多的组织,误差更低,为 3.88 ± 0.093 dB(稀疏编码)和 3.47 ± 0.78(核范数),尤其是在组织运动和伪影运动的速度较小(≤0.25 个中心频率周期/帧)的情况下,同时产生相当的杂波抑制性能。我们还通过在五个具有合成杂波的小鼠心脏数据集上量化心脏周期的跟踪误差,在体内验证了 CLEAR。与 SVF 相比,CLEAR 将误差降低了约 50%。