Suppr超能文献

通过因果关系预测细胞周期调控基因。

Predicting cell cycle regulated genes by causal interactions.

机构信息

Computational Biology and Machine Learning, Center for Cancer Research and Cell Biology, School of Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom.

出版信息

PLoS One. 2009 Aug 18;4(8):e6633. doi: 10.1371/journal.pone.0006633.

Abstract

The fundamental difference between classic and modern biology is that technological innovations allow to generate high-throughput data to get insights into molecular interactions on a genomic scale. These high-throughput data can be used to infer gene networks, e.g., the transcriptional regulatory or signaling network, representing a blue print of the current dynamical state of the cellular system. However, gene networks do not provide direct answers to biological questions, instead, they need to be analyzed to reveal functional information of molecular working mechanisms. In this paper we propose a new approach to analyze the transcriptional regulatory network of yeast to predict cell cycle regulated genes. The novelty of our approach is that, in contrast to all other approaches aiming to predict cell cycle regulated genes, we do not use time series data but base our analysis on the prior information of causal interactions among genes. The major purpose of the present paper is to predict cell cycle regulated genes in S. cerevisiae. Our analysis is based on the transcriptional regulatory network, representing causal interactions between genes, and a list of known periodic genes. No further data are used. Our approach utilizes the causal membership of genes and the hierarchical organization of the transcriptional regulatory network leading to two groups of periodic genes with a well defined direction of information flow. We predict genes as periodic if they appear on unique shortest paths connecting two periodic genes from different hierarchy levels. Our results demonstrate that a classical problem as the prediction of cell cycle regulated genes can be seen in a new light if the concept of a causal membership of a gene is applied consequently. This also shows that there is a wealth of information buried in the transcriptional regulatory network whose unraveling may require more elaborate concepts than it might seem at first.

摘要

经典生物学和现代生物学的根本区别在于,技术创新使得能够生成高通量数据,从而深入了解基因组规模上的分子相互作用。这些高通量数据可用于推断基因网络,例如转录调控或信号网络,它们代表了细胞系统当前动态状态的蓝图。然而,基因网络并不能直接回答生物学问题,相反,需要对其进行分析以揭示分子工作机制的功能信息。在本文中,我们提出了一种新的方法来分析酵母的转录调控网络,以预测细胞周期调控基因。我们方法的新颖之处在于,与所有其他旨在预测细胞周期调控基因的方法不同,我们不使用时间序列数据,而是基于基因之间因果相互作用的先验信息进行分析。本文的主要目的是预测酿酒酵母中的细胞周期调控基因。我们的分析基于转录调控网络,代表基因之间的因果相互作用,以及已知周期性基因的列表。不使用其他数据。我们的方法利用基因的因果成员关系和转录调控网络的层次结构,导致两组具有明确信息流方向的周期性基因。如果基因出现在连接来自不同层次的两个周期性基因的唯一最短路径上,则将其预测为周期性基因。我们的结果表明,如果应用基因因果成员关系的概念,那么经典问题(如预测细胞周期调控基因)可以从新的角度来看待。这也表明,转录调控网络中隐藏着大量信息,其揭示可能需要比乍看起来更精细的概念。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd98/2723924/8ebfe511b73a/pone.0006633.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验