Suppr超能文献

推断基因调控网络的保守因果核心。

Inferring the conservative causal core of gene regulatory networks.

作者信息

Altay Gökmen, Emmert-Streib Frank

机构信息

Computational Biology and Machine Learning, Center for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.

出版信息

BMC Syst Biol. 2010 Sep 28;4:132. doi: 10.1186/1752-0509-4-132.

Abstract

BACKGROUND

Inferring gene regulatory networks from large-scale expression data is an important problem that received much attention in recent years. These networks have the potential to gain insights into causal molecular interactions of biological processes. Hence, from a methodological point of view, reliable estimation methods based on observational data are needed to approach this problem practically.

RESULTS

In this paper, we introduce a novel gene regulatory network inference (GRNI) algorithm, called C3NET. We compare C3NET with four well known methods, ARACNE, CLR, MRNET and RN, conducting in-depth numerical ensemble simulations and demonstrate also for biological expression data from E. coli that C3NET performs consistently better than the best known GRNI methods in the literature. In addition, it has also a low computational complexity. Since C3NET is based on estimates of mutual information values in conjunction with a maximization step, our numerical investigations demonstrate that our inference algorithm exploits causal structural information in the data efficiently.

CONCLUSIONS

For systems biology to succeed in the long run, it is of crucial importance to establish methods that extract large-scale gene networks from high-throughput data that reflect the underlying causal interactions among genes or gene products. Our method can contribute to this endeavor by demonstrating that an inference algorithm with a neat design permits not only a more intuitive and possibly biological interpretation of its working mechanism but can also result in superior results.

摘要

背景

从大规模表达数据推断基因调控网络是近年来备受关注的重要问题。这些网络有可能深入了解生物过程的因果分子相互作用。因此,从方法论的角度来看,需要基于观测数据的可靠估计方法来实际解决这个问题。

结果

在本文中,我们介绍了一种名为C3NET的新型基因调控网络推断(GRNI)算法。我们将C3NET与四种著名方法ARACNE、CLR、MRNET和RN进行比较,进行了深入的数值整体模拟,并针对大肠杆菌的生物表达数据证明,C3NET的性能始终优于文献中最著名的GRNI方法。此外,它还具有较低的计算复杂度。由于C3NET基于互信息值的估计并结合最大化步骤,我们的数值研究表明,我们的推断算法能够有效地利用数据中的因果结构信息。

结论

从长远来看,系统生物学要取得成功,建立从高通量数据中提取反映基因或基因产物之间潜在因果相互作用的大规模基因网络的方法至关重要。我们的方法可以为此做出贡献,通过证明一种设计简洁的推断算法不仅允许对其工作机制进行更直观且可能具有生物学意义的解释,而且还能产生更优的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0967/2955605/7f010ef14438/1752-0509-4-132-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验