Suppr超能文献

GABAB的空间分布和差异性募集调节听觉皮层的振荡活动。

Spatial profile and differential recruitment of GABAB modulate oscillatory activity in auditory cortex.

作者信息

Oswald Anne-Marie M, Doiron Brent, Rinzel John, Reyes Alex D

机构信息

Center for Neural Science and Courant Institute of Mathematical Sciences, New York University, New York, NY 10003, USA.

出版信息

J Neurosci. 2009 Aug 19;29(33):10321-34. doi: 10.1523/JNEUROSCI.1703-09.2009.

Abstract

The interplay between inhibition and excitation is at the core of cortical network activity. In many cortices, including auditory cortex (ACx), interactions between excitatory and inhibitory neurons generate synchronous network gamma oscillations (30-70 Hz). Here, we show that differences in the connection patterns and synaptic properties of excitatory-inhibitory microcircuits permit the spatial extent of network inputs to modulate the magnitude of gamma oscillations. Simultaneous multiple whole-cell recordings from connected fast-spiking interneurons and pyramidal cells in L2/3 of mouse ACx slices revealed that for intersomatic distances <50 microm, most inhibitory connections occurred in reciprocally connected (RC) pairs; at greater distances, inhibitory connections were equally likely in RC and nonreciprocally connected (nRC) pairs. Furthermore, the GABA(B)-mediated inhibition in RC pairs was weaker than in nRC pairs. Simulations with a network model that incorporated these features showed strong, gamma band oscillations only when the network inputs were confined to a small area. These findings suggest a novel mechanism by which oscillatory activity can be modulated by adjusting the spatial distribution of afferent input.

摘要

抑制与兴奋之间的相互作用是皮层网络活动的核心。在包括听觉皮层(ACx)在内的许多皮层中,兴奋性和抑制性神经元之间的相互作用会产生同步的网络伽马振荡(30 - 70赫兹)。在这里,我们表明兴奋性 - 抑制性微电路的连接模式和突触特性的差异使得网络输入的空间范围能够调节伽马振荡的幅度。从小鼠ACx切片的L2/3中相连的快速放电中间神经元和锥体细胞进行同步多全细胞记录发现,对于体细胞间距离<50微米的情况,大多数抑制性连接发生在相互连接(RC)对中;在更大距离时,RC对和非相互连接(nRC)对中抑制性连接的可能性相同。此外,RC对中GABA(B)介导的抑制作用比nRC对中的弱。结合这些特征的网络模型模拟表明,只有当网络输入局限于小区域时才会出现强烈的伽马波段振荡。这些发现提示了一种新机制,通过调整传入输入的空间分布来调节振荡活动。

相似文献

1
Spatial profile and differential recruitment of GABAB modulate oscillatory activity in auditory cortex.
J Neurosci. 2009 Aug 19;29(33):10321-34. doi: 10.1523/JNEUROSCI.1703-09.2009.
2
Synaptic Mechanisms of Tight Spike Synchrony at Gamma Frequency in Cerebral Cortex.
J Neurosci. 2015 Jul 15;35(28):10236-51. doi: 10.1523/JNEUROSCI.0828-15.2015.
3
5
Downregulation of parvalbumin at cortical GABA synapses reduces network gamma oscillatory activity.
J Neurosci. 2011 Dec 7;31(49):18137-48. doi: 10.1523/JNEUROSCI.3041-11.2011.
6
Network mechanisms of gamma oscillations in the CA3 region of the hippocampus.
Neural Netw. 2009 Oct;22(8):1113-9. doi: 10.1016/j.neunet.2009.07.024. Epub 2009 Jul 22.
7
Cellular mechanisms of thalamically evoked gamma oscillations in auditory cortex.
J Neurophysiol. 2001 Mar;85(3):1235-45. doi: 10.1152/jn.2001.85.3.1235.
8
Spatial profile of excitatory and inhibitory synaptic connectivity in mouse primary auditory cortex.
J Neurosci. 2012 Apr 18;32(16):5609-19. doi: 10.1523/JNEUROSCI.5158-11.2012.
9
Synaptic activation of GABA(B) receptors regulates neuronal network activity and entrainment.
Eur J Neurosci. 2007 May;25(10):2982-90. doi: 10.1111/j.1460-9568.2007.05544.x.

引用本文的文献

2
Pallidal GABA B receptors: involvement in cortex beta dynamics and thalamic reticular nucleus activity.
J Physiol Sci. 2023 Jun 16;73(1):14. doi: 10.1186/s12576-023-00870-8.
3
Chaotic dynamics in spatially distributed neuronal networks generate population-wide shared variability.
PLoS Comput Biol. 2023 Jan 10;19(1):e1010843. doi: 10.1371/journal.pcbi.1010843. eCollection 2023 Jan.
5
Network dynamics underlying OFF responses in the auditory cortex.
Elife. 2021 Mar 24;10:e53151. doi: 10.7554/eLife.53151.
6
Neocortical Layer 1: An Elegant Solution to Top-Down and Bottom-Up Integration.
Annu Rev Neurosci. 2021 Jul 8;44:221-252. doi: 10.1146/annurev-neuro-100520-012117. Epub 2021 Mar 17.
7
Neuronal Avalanches in Input and Associative Layers of Auditory Cortex.
Front Syst Neurosci. 2019 Sep 4;13:45. doi: 10.3389/fnsys.2019.00045. eCollection 2019.
8
Functional Logic of Layer 2/3 Inhibitory Connectivity in the Ferret Visual Cortex.
Neuron. 2019 Nov 6;104(3):451-457.e3. doi: 10.1016/j.neuron.2019.08.004. Epub 2019 Sep 5.
9
Preserving Inhibition during Developmental Hearing Loss Rescues Auditory Learning and Perception.
J Neurosci. 2019 Oct 16;39(42):8347-8361. doi: 10.1523/JNEUROSCI.0749-19.2019. Epub 2019 Aug 26.
10
Gamma Oscillations in the Basolateral Amygdala: Biophysical Mechanisms and Computational Consequences.
eNeuro. 2019 Feb 5;6(1). doi: 10.1523/ENEURO.0388-18.2018. eCollection 2019 Jan-Feb.

本文引用的文献

1
Driving fast-spiking cells induces gamma rhythm and controls sensory responses.
Nature. 2009 Jun 4;459(7247):663-7. doi: 10.1038/nature08002. Epub 2009 Apr 26.
2
The fractions of short- and long-range connections in the visual cortex.
Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3555-60. doi: 10.1073/pnas.0810390106. Epub 2009 Feb 12.
3
Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons.
PLoS Comput Biol. 2008 Dec;4(12):e1000239. doi: 10.1371/journal.pcbi.1000239. Epub 2008 Dec 12.
4
GABA transporter GAT1 prevents spillover at proximal and distal GABA synapses onto primate prefrontal cortex neurons.
J Neurophysiol. 2009 Feb;101(2):533-47. doi: 10.1152/jn.91161.2008. Epub 2008 Dec 10.
5
Functional maps of neocortical local circuitry.
Front Neurosci. 2007 Oct 15;1(1):19-42. doi: 10.3389/neuro.01.1.1.002.2007. eCollection 2007 Nov.
7
Maturation of intrinsic and synaptic properties of layer 2/3 pyramidal neurons in mouse auditory cortex.
J Neurophysiol. 2008 Jun;99(6):2998-3008. doi: 10.1152/jn.01160.2007. Epub 2008 Apr 16.
8
Spectrotemporal processing differences between auditory cortical fast-spiking and regular-spiking neurons.
J Neurosci. 2008 Apr 9;28(15):3897-910. doi: 10.1523/JNEUROSCI.5366-07.2008.
10
Neuronal oscillations and visual amplification of speech.
Trends Cogn Sci. 2008 Mar;12(3):106-13. doi: 10.1016/j.tics.2008.01.002. Epub 2008 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验