Suppr超能文献

通过相关联的独立成分分析和导联矩阵列对 EEG/MEG 数据进行源定位。

Source localization of EEG/MEG data by correlating columns of ICA and lead field matrices.

机构信息

Department of Radiology, University of California at San Francisco, San Francisco, CA 94143, USA.

出版信息

IEEE Trans Biomed Eng. 2009 Nov;56(11):2619-26. doi: 10.1109/TBME.2009.2028615. Epub 2009 Aug 18.

Abstract

Independent components analysis (ICA) has previously been used to denoise EEG/magnetoencephalography (MEG) signals before performing neural source localization. Source localization is then performed using a method such as beamforming or dipole fitting. Here we show how ICA can also be used as a source localization method, negating the need for beamforming and dipole fitting. This type of approach is valid whenever an estimate of the forward (mixing) model for all putative source locations is available, which includes EEG and MEG applications. The proposed method consists of estimating the forward model using the laws of physics, estimating a second forward model using ICA, and then correlating the columns of the matrices that represent the two forward models. We show that, when synthetic data are used, the proposed localization method produces a smaller localization error than several alternatives. We also show localization results for real auditory-evoked MEG data.

摘要

独立成分分析(ICA)以前曾被用于在进行神经源定位之前对脑电/脑磁图(MEG)信号进行去噪。然后使用波束形成或偶极子拟合等方法进行源定位。在这里,我们展示了如何将 ICA 也用作源定位方法,从而无需进行波束形成和偶极子拟合。只要可以获得所有假定源位置的正向(混合)模型的估计值,这种方法就有效,其中包括 EEG 和 MEG 应用。所提出的方法包括使用物理定律估计正向模型,使用 ICA 估计第二个正向模型,然后对表示两个正向模型的矩阵的列进行相关。我们表明,在使用合成数据时,所提出的定位方法产生的定位误差比几种替代方法小。我们还展示了真实听觉诱发 MEG 数据的定位结果。

相似文献

1
Source localization of EEG/MEG data by correlating columns of ICA and lead field matrices.
IEEE Trans Biomed Eng. 2009 Nov;56(11):2619-26. doi: 10.1109/TBME.2009.2028615. Epub 2009 Aug 18.
2
Source-space ICA for EEG source separation, localization, and time-course reconstruction.
Neuroimage. 2014 Nov 1;101:720-37. doi: 10.1016/j.neuroimage.2014.07.052. Epub 2014 Aug 7.
3
Monte Carlo simulation studies of EEG and MEG localization accuracy.
Hum Brain Mapp. 2002 May;16(1):47-62. doi: 10.1002/hbm.10024.
5
Source-space ICA for MEG source imaging.
J Neural Eng. 2016 Feb;13(1):016005. doi: 10.1088/1741-2560/13/1/016005. Epub 2015 Dec 8.
6
Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals.
Neuroimage. 2015 Mar;108:328-42. doi: 10.1016/j.neuroimage.2014.12.040. Epub 2014 Dec 23.
7
The effect of mutual information on independent component analysis in EEG/MEG analysis: a simulation study.
Int J Neurosci. 2008 Nov;118(11):1534-46. doi: 10.1080/00207450802324655.
8
Electromagnetic tomography via source-space-ICA.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:37-40. doi: 10.1109/EMBC.2013.6609431.
9
Spectral Independent Component Analysis with noise modeling for M/EEG source separation.
J Neurosci Methods. 2021 May 15;356:109144. doi: 10.1016/j.jneumeth.2021.109144. Epub 2021 Mar 23.
10
Error bounds for EEG and MEG dipole source localization.
Electroencephalogr Clin Neurophysiol. 1993 May;86(5):303-21. doi: 10.1016/0013-4694(93)90043-u.

引用本文的文献

2
Nonlinear Modeling of Cortical Responses to Mechanical Wrist Perturbations Using the NARMAX Method.
IEEE Trans Biomed Eng. 2021 Mar;68(3):948-958. doi: 10.1109/TBME.2020.3013545. Epub 2021 Feb 18.
3
Independent component analysis of instantaneous power-based fMRI.
Comput Math Methods Med. 2014;2014:579652. doi: 10.1155/2014/579652. Epub 2014 Mar 6.
4
Adapted filter banks for feature extraction in transcranial magnetic stimulation evoked responses.
Med Biol Eng Comput. 2011 Feb;49(2):221-31. doi: 10.1007/s11517-010-0726-7. Epub 2011 Jan 11.

本文引用的文献

1
Fine-scale genetic mapping using independent component analysis.
IEEE/ACM Trans Comput Biol Bioinform. 2008 Jul-Sep;5(3):448-60. doi: 10.1109/TCBB.2007.1072.
2
Multiclass common spatial patterns and information theoretic feature extraction.
IEEE Trans Biomed Eng. 2008 Aug;55(8):1991-2000. doi: 10.1109/TBME.2008.921154.
3
Fractional delay estimation for blind source separation and localization of temporomandibular joint sounds.
IEEE Trans Biomed Eng. 2008 Mar;55(3):949-56. doi: 10.1109/TBME.2007.909534.
4
An expectation-maximization method for spatio-temporal blind source separation using an AR-MOG source model.
IEEE Trans Neural Netw. 2008 Mar;19(3):508-19. doi: 10.1109/TNN.2007.914154.
6
NUTMEG: a neuromagnetic source reconstruction toolbox.
Neurol Clin Neurophysiol. 2004 Nov 30;2004:52.
7
Asymptotic SNR of scalar and vector minimum-variance beamformers for neuromagnetic source reconstruction.
IEEE Trans Biomed Eng. 2004 Oct;51(10):1726-34. doi: 10.1109/TBME.2004.827926.
8
EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis.
J Neurosci Methods. 2004 Mar 15;134(1):9-21. doi: 10.1016/j.jneumeth.2003.10.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验