Department of Radiology, University of California at San Francisco, San Francisco, CA 94143, USA.
IEEE Trans Biomed Eng. 2009 Nov;56(11):2619-26. doi: 10.1109/TBME.2009.2028615. Epub 2009 Aug 18.
Independent components analysis (ICA) has previously been used to denoise EEG/magnetoencephalography (MEG) signals before performing neural source localization. Source localization is then performed using a method such as beamforming or dipole fitting. Here we show how ICA can also be used as a source localization method, negating the need for beamforming and dipole fitting. This type of approach is valid whenever an estimate of the forward (mixing) model for all putative source locations is available, which includes EEG and MEG applications. The proposed method consists of estimating the forward model using the laws of physics, estimating a second forward model using ICA, and then correlating the columns of the matrices that represent the two forward models. We show that, when synthetic data are used, the proposed localization method produces a smaller localization error than several alternatives. We also show localization results for real auditory-evoked MEG data.
独立成分分析(ICA)以前曾被用于在进行神经源定位之前对脑电/脑磁图(MEG)信号进行去噪。然后使用波束形成或偶极子拟合等方法进行源定位。在这里,我们展示了如何将 ICA 也用作源定位方法,从而无需进行波束形成和偶极子拟合。只要可以获得所有假定源位置的正向(混合)模型的估计值,这种方法就有效,其中包括 EEG 和 MEG 应用。所提出的方法包括使用物理定律估计正向模型,使用 ICA 估计第二个正向模型,然后对表示两个正向模型的矩阵的列进行相关。我们表明,在使用合成数据时,所提出的定位方法产生的定位误差比几种替代方法小。我们还展示了真实听觉诱发 MEG 数据的定位结果。