Suppr超能文献

经颅磁刺激诱发响应中特征提取的自适应滤波器组。

Adapted filter banks for feature extraction in transcranial magnetic stimulation evoked responses.

机构信息

Computational Diagnostics and Biocybernetics Unit, Saarland University Hospital and Saarland University of Applied Sciences, Homburg/Saar, Germany.

出版信息

Med Biol Eng Comput. 2011 Feb;49(2):221-31. doi: 10.1007/s11517-010-0726-7. Epub 2011 Jan 11.

Abstract

A novel adaptive and approximate shift-invariant wavelet packet feature extraction scheme for event-related potentials (ERPs) in the electroencephalogram (EEG) is introduced in this paper. In this algorithm, the shift-invariant wavelet packed decomposition is done by integrating a cost function for decimation decision in each sub-band expansion. Additionally, a shape adaptation of the wavelet is implemented to find the best adapted wavelet shape for a given class of ERPs. This scheme is used to analyze the time course of the impact of single-pulse transcranial magnetic stimulation (TMS) to the auditory ERPs. We show that the proposed scheme is able to extract even slightest impacts of TMS, making it a promising tool for the extraction of weak ERPs components, particularly in hybrid TMS-EEG/ERP setups.

摘要

本文提出了一种新的自适应近似平移不变子波包特征提取方案,用于脑电图(EEG)中的事件相关电位(ERP)。在该算法中,通过在每个子带扩展中集成用于抽取决策的代价函数来完成平移不变子波包分解。此外,还实现了子波的形状自适应,以找到给定类别的 ERP 的最佳适应子波形状。该方案用于分析单次经颅磁刺激(TMS)对听觉 ERP 的时程影响。我们表明,所提出的方案能够提取 TMS 的最小影响,使其成为提取弱 ERP 成分的有前途的工具,特别是在混合 TMS-EEG/ERP 设置中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验