Carlson C R, Klopfenstein R W, Anderson C H
RCA/David Sarnoff Research Laboratories, Princeton, New Jersey 08540, USA.
Opt Lett. 1981 Aug 1;6(8):386-8. doi: 10.1364/ol.6.000386.
Scale invariance and data compression are two desirable attributes for spatial transforms to be used for pattern recognition. We have found that the requirement of a form of scale invariance leads to a natural reduction in the information to be processed. Such scaled transforms exhibit spatial inhomogeneity similar to that of the human visual system. That is, scaled transforms provide a global view of low resolution while maintaining a detailed view of the image at the transform center (which can be moved to points of interest). Like the visual system, scaled transforms can have rotational invariance, but, in general, translational invariance is lost. The conventional Fourier transform is a limiting case of the general class of scaled transforms.
尺度不变性和数据压缩是空间变换用于模式识别时的两个理想属性。我们发现,某种形式的尺度不变性要求会自然减少待处理的信息。这种尺度变换呈现出与人类视觉系统相似的空间不均匀性。也就是说,尺度变换提供低分辨率的全局视图,同时在变换中心(可移动到感兴趣的点)保持图像的详细视图。与视觉系统一样,尺度变换可以具有旋转不变性,但一般会失去平移不变性。传统的傅里叶变换是一般尺度变换类别的一个极限情况。