Klopfenstein R W, Carlson C R
J Opt Soc Am A. 1984 Oct;1(10):1040-53. doi: 10.1364/josaa.1.001040.
The human visual system exhibits two properties that may be useful in other pattern-recognition systems: images do not change their shape with changes in image size and resolution declines rapidly with distance from the center of fixation. We show here that, in general, shape invariance requires inhomogeneous resolution over image space in a manner similar to that of the human visual system. Thus shape-invariant systems must process less information when compared with uniform-resolution systems. Although shape-invariant systems can be rotationally invariant, they cannot, in general, be translationally invariant. The properties of shape-invariant systems are explored in the spatial-frequency domain using a modified Fourier transform called a scaled transform. The features of scaled transforms are discussed and their behavior illustrated in the image domain by using them to filter various images, including the dot, the line, and the edge. It is shown that the filtered profile of an edge is preserved when it passes through the origin of a scaled transform. This result suggests that scaled transforms may be useful in edge-detection algorithms.
人类视觉系统具有两种特性,这两种特性在其他模式识别系统中可能会很有用:图像不会随着图像大小的变化而改变其形状,并且分辨率会随着与注视中心距离的增加而迅速下降。我们在此表明,一般来说,形状不变性要求在图像空间上具有不均匀的分辨率,其方式类似于人类视觉系统。因此,与均匀分辨率系统相比,形状不变系统必须处理更少的信息。虽然形状不变系统可以是旋转不变的,但一般来说,它们不能是平移不变的。使用一种称为缩放变换的修改傅里叶变换,在空间频率域中探索形状不变系统的特性。讨论了缩放变换的特征,并通过使用它们对包括点、线和边缘在内的各种图像进行滤波,在图像域中说明了它们的行为。结果表明,当边缘的滤波轮廓通过缩放变换的原点时,其形状得以保留。这一结果表明,缩放变换在边缘检测算法中可能会很有用。