Suppr超能文献

基于Get3结构的真核生物尾锚定蛋白结合模型。

Model for eukaryotic tail-anchored protein binding based on the structure of Get3.

作者信息

Suloway Christian J M, Chartron Justin W, Zaslaver Ma'ayan, Clemons William M

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.

出版信息

Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14849-54. doi: 10.1073/pnas.0907522106. Epub 2009 Aug 14.

Abstract

The Get3 ATPase directs the delivery of tail-anchored (TA) proteins to the endoplasmic reticulum (ER). TA-proteins are characterized by having a single transmembrane helix (TM) at their extreme C terminus and include many essential proteins, such as SNAREs, apoptosis factors, and protein translocation components. These proteins cannot follow the SRP-dependent co-translational pathway that typifies most integral membrane proteins; instead, post-translationally, these proteins are recognized and bound by Get3 then delivered to the ER in the ATP dependent Get pathway. To elucidate a molecular mechanism for TA protein binding by Get3 we have determined three crystal structures in apo and ADP forms from Saccharomyces cerevisae (ScGet3-apo) and Aspergillus fumigatus (AfGet3-apo and AfGet3-ADP). Using structural information, we generated mutants to confirm important interfaces and essential residues. These results point to a model of how Get3 couples ATP hydrolysis to the binding and release of TA-proteins.

摘要

Get3 ATP酶将尾锚定(TA)蛋白运输至内质网(ER)。TA蛋白的特征是在其极端C末端具有单个跨膜螺旋(TM),并包括许多必需蛋白,如SNARE蛋白、凋亡因子和蛋白质转运成分。这些蛋白无法遵循大多数整合膜蛋白所特有的依赖信号识别颗粒(SRP)的共翻译途径;相反,在翻译后,这些蛋白被Get3识别并结合,然后通过依赖ATP的Get途径运输至内质网。为阐明Get3结合TA蛋白的分子机制,我们测定了来自酿酒酵母(ScGet3-apo)和烟曲霉(AfGet3-apo和AfGet3-ADP)的脱辅基和ADP形式的三种晶体结构。利用结构信息,我们生成了突变体以确认重要界面和必需残基。这些结果指向了一个关于Get3如何将ATP水解与TA蛋白的结合和释放相偶联的模型。

相似文献

1
Model for eukaryotic tail-anchored protein binding based on the structure of Get3.
Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14849-54. doi: 10.1073/pnas.0907522106. Epub 2009 Aug 14.
2
Get1 stabilizes an open dimer conformation of get3 ATPase by binding two distinct interfaces.
J Mol Biol. 2012 Sep 21;422(3):366-75. doi: 10.1016/j.jmb.2012.05.045. Epub 2012 Jun 7.
3
The structural basis of tail-anchored membrane protein recognition by Get3.
Nature. 2009 Sep 17;461(7262):361-6. doi: 10.1038/nature08319. Epub 2009 Aug 12.
4
Preliminary X-ray crystallographic studies of yeast Get3.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 May 1;65(Pt 5):489-91. doi: 10.1107/S1744309109012317. Epub 2009 Apr 24.
5
The crystal structures of yeast Get3 suggest a mechanism for tail-anchored protein membrane insertion.
PLoS One. 2009 Nov 30;4(11):e8061. doi: 10.1371/journal.pone.0008061.
6
Structural insight into the membrane insertion of tail-anchored proteins by Get3.
Genes Cells. 2010 Jan;15(1):29-41. doi: 10.1111/j.1365-2443.2009.01362.x. Epub 2009 Dec 15.
7
Nucleotide-dependent mechanism of Get3 as elucidated from free energy calculations.
Proc Natl Acad Sci U S A. 2012 May 15;109(20):7759-64. doi: 10.1073/pnas.1117441109. Epub 2012 Apr 30.
8
Structural characterization of the Get4/Get5 complex and its interaction with Get3.
Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12127-32. doi: 10.1073/pnas.1006036107. Epub 2010 Jun 16.
9
Precise timing of ATPase activation drives targeting of tail-anchored proteins.
Proc Natl Acad Sci U S A. 2013 May 7;110(19):7666-71. doi: 10.1073/pnas.1222054110. Epub 2013 Apr 22.
10
The mechanism of tail-anchored protein insertion into the ER membrane.
Mol Cell. 2011 Sep 2;43(5):738-50. doi: 10.1016/j.molcel.2011.07.020. Epub 2011 Aug 11.

引用本文的文献

1
The GET insertase exhibits conformational plasticity and induces membrane thinning.
Nat Commun. 2023 Nov 14;14(1):7355. doi: 10.1038/s41467-023-42867-2.
2
Structures of Get3d reveal a distinct architecture associated with the emergence of photosynthesis.
J Biol Chem. 2023 Jun;299(6):104752. doi: 10.1016/j.jbc.2023.104752. Epub 2023 Apr 24.
3
The GET pathway serves to activate Atg32-mediated mitophagy by ER targeting of the Ppg1-Far complex.
Life Sci Alliance. 2023 Jan 25;6(4). doi: 10.26508/lsa.202201640. Print 2023 Apr.
5
A TAle of Two Pathways: Tail-Anchored Protein Insertion at the Endoplasmic Reticulum.
Cold Spring Harb Perspect Biol. 2023 Mar 1;15(3):a041252. doi: 10.1101/cshperspect.a041252.
6
Structurally derived universal mechanism for the catalytic cycle of the tail-anchored targeting factor Get3.
Nat Struct Mol Biol. 2022 Aug;29(8):820-830. doi: 10.1038/s41594-022-00798-4. Epub 2022 Jul 18.
7
Looking for a safe haven: tail-anchored proteins and their membrane insertion pathways.
Plant Physiol. 2021 Dec 4;187(4):1916-1928. doi: 10.1093/plphys/kiab298.
8
Deciphering the molecular organization of GET pathway chaperones through native mass spectrometry.
Biophys J. 2022 Apr 5;121(7):1289-1298. doi: 10.1016/j.bpj.2022.02.026. Epub 2022 Feb 19.
9
Structural insights into metazoan pretargeting GET complexes.
Nat Struct Mol Biol. 2021 Dec;28(12):1029-1037. doi: 10.1038/s41594-021-00690-7. Epub 2021 Dec 9.
10
A conserved guided entry of tail-anchored pathway is involved in the trafficking of a subset of membrane proteins in Plasmodium falciparum.
PLoS Pathog. 2021 Nov 15;17(11):e1009595. doi: 10.1371/journal.ppat.1009595. eCollection 2021 Nov.

本文引用的文献

1
Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum.
Science. 2009 Mar 27;323(5922):1693-7. doi: 10.1126/science.1167983.
2
The GET complex mediates insertion of tail-anchored proteins into the ER membrane.
Cell. 2008 Aug 22;134(4):634-45. doi: 10.1016/j.cell.2008.06.025.
3
ASNA1, an ATPase targeting tail-anchored proteins, regulates melanoma cell growth and sensitivity to cisplatin and arsenite.
Cancer Chemother Pharmacol. 2009 Feb;63(3):491-9. doi: 10.1007/s00280-008-0762-2. Epub 2008 May 14.
4
Distinct targeting pathways for the membrane insertion of tail-anchored (TA) proteins.
J Cell Sci. 2008 Jun 1;121(11):1832-40. doi: 10.1242/jcs.020321. Epub 2008 May 13.
5
Data growth and its impact on the SCOP database: new developments.
Nucleic Acids Res. 2008 Jan;36(Database issue):D419-25. doi: 10.1093/nar/gkm993. Epub 2007 Nov 13.
6
Inference of macromolecular assemblies from crystalline state.
J Mol Biol. 2007 Sep 21;372(3):774-97. doi: 10.1016/j.jmb.2007.05.022. Epub 2007 May 13.
7
How tails guide tail-anchored proteins to their destinations.
Curr Opin Cell Biol. 2007 Aug;19(4):368-75. doi: 10.1016/j.ceb.2007.04.019. Epub 2007 Jul 16.
8
Caenorhabditis elegans expresses a functional ArsA.
FEBS J. 2007 May;274(10):2566-72. doi: 10.1111/j.1742-4658.2007.05791.x. Epub 2007 Apr 10.
9
The Cfd1-Nbp35 complex acts as a scaffold for iron-sulfur protein assembly in the yeast cytosol.
Nat Chem Biol. 2007 May;3(5):278-86. doi: 10.1038/nchembio872. Epub 2007 Apr 1.
10
Identification of a targeting factor for posttranslational membrane protein insertion into the ER.
Cell. 2007 Mar 23;128(6):1147-59. doi: 10.1016/j.cell.2007.01.036.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验