Suppr超能文献

Experimental observation of a strange temporal oscillation of X-ray Pendellösung fringes.

作者信息

Yoshimura Jun-ichi, Hirano Keiichi

机构信息

Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan.

出版信息

J Synchrotron Radiat. 2009 Sep;16(Pt 5):601-9. doi: 10.1107/S0909049509029586. Epub 2009 Aug 15.

Abstract

As a strange property not explained by existing theories, it has been known from experiment that X-ray moiré and Pendellösung interference fringes show a small spatial oscillation in the beam path in free space that the diffraction image carrying those fringes is propagated after emerging from the crystal. In connection with the investigation into this strange fringe oscillation, it has been found, by an experiment successively recording Pendellösung-fringe topographs using an X-ray CCD camera, that X-ray Pendellösung fringes also show a small temporal oscillation. Characteristics of this temporal Pendellösung-fringe oscillation, namely irregularities in the fringe profile, the manner of fringe oscillation and a reciprocal correlation between oscillation amplitude and fringe contrast, are shown to be very similar to those of the previously reported spatial oscillation of moiré and Pendellösung fringes. Therefore this temporal oscillation is supposed to have the same origin as the spatial oscillation, revealing another section of the same phenomenon. This discovery of the temporal oscillation advances a step nearer to the full understanding of this strange phenomenon, while disclosing a new property of Pendellösung fringes. As well as the above, a three-dimensional profile representation (surface plot) is given of the image of Pendellösung fringes, to make it clear that unidentified fine intensity modulations, called subfringes in this paper, are produced superposed on the main fringe system. Overall inspection of the intensity profiles of the fringe-imaged topographs suggests that temporal intensity oscillations also occur on a more global scale than the extension of individual fringes, as an unidentified action of the wavefield.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验