Department of Chemistry, Tsinghua University, Beijing 100084, China.
Inorg Chem. 2009 Oct 5;48(19):9222-35. doi: 10.1021/ic900985w.
A series of remote hydroxyl functionalized organoimido derivatives of hexamolybdate, (Bu(4)N)(2)[Mo(6)O(18)(Cres)] (1) (Cres = 4-amino-m-cresol), (Bu(4)N)(2)[Mo(6)O(17)(Cres)(2)] x H(2)O (2), (Bu(4)N)(2)[Mo(6)O(18)(Phen)] x i-PrOH (Phen = p-aminophenol)(3), (Bu(4)N)(2)[Mo(6)O(18)(Phen)] x EtOH (4), (Bu(4)N)(2)[Mo(6)O(17)(Phen)(2)] (5), (Bu(4)N)(2)[Mo(6)O(18)(Naph)] (Naph = 5-amino-1-napheynyl) (6), and (Bu(4)N)(2)[Mo(6)O(18)(Chex)] x 1.5 H(2)O (Chex = trans-4-aminocyclohexanol) (7) were synthesized and characterized by single crystal X-ray diffraction, FT-IR spectra, UV-vis spectra, elemental analysis, (1)H NMR, and cyclic voltammetry. X-ray structural study reveals that intermolecular and intramolecular hydrogen bonding plays an important role in their supramolecular assembly; it is found that (i) bridged oxo ligands of hexamolybdate cluster are more inclined to form hydrogen bonds as acceptors than terminal oxo ligands in this system; (ii) small solvent molecules with hydrogen bonding donor and acceptor, such as water, i-PrOH, and EtOH, usually act as hydrogen bonding bridge in their supramolecular assembly; (iii) hydrogen bonding has an important influence on their anion conformation besides cell packing; (iv) the hydrogen bonding supramolecular assembly of compounds 1-7 demonstrate an interesting change from dimer (3), to 1D infinite single chain (4), to 1D infinite double chain (2), and to 2D network (1, 5, 6, and 7) owing to the alteration of the grafting organic ligand, the substituted number, and the crystallized solvent molecule. To explore their potential application in conductivity, the optical band gap of compounds 1-7 were determined upon their solid state reflectance spectra. Our current study not only surveys systematically hydrogen bonding interaction and supramolecular assembly of remote hydroxyl functionalized organoimido-derivatized hexamolybdates but also provides some available precursors for further modification including esterification.
一系列远程羟基金属有机亚胺衍生的六钼酸盐,(Bu(4)N)(2)[Mo(6)O(18)(Cres)] (1) (Cres = 4-氨基-m-间甲酚),(Bu(4)N)(2)[Mo(6)O(17)(Cres)(2)] x H(2)O (2),(Bu(4)N)(2)[Mo(6)O(18)(Phen)] x i-PrOH (Phen = p-氨基酚)(3),(Bu(4)N)(2)[Mo(6)O(18)(Phen)] x EtOH (4),(Bu(4)N)(2)[Mo(6)O(17)(Phen)(2)] (5),(Bu(4)N)(2)[Mo(6)O(18)(Naph)] (Naph = 5-氨基-1-萘基)(6),和(Bu(4)N)(2)[Mo(6)O(18)(Chex)] x 1.5 H(2)O (Chex = 反式-4-氨基环己醇)(7)被合成并通过单晶 X 射线衍射、FT-IR 光谱、UV-vis 光谱、元素分析、(1)H NMR 和循环伏安法进行了表征。X 射线结构研究表明,分子间和分子内氢键在它们的超分子组装中起着重要作用;结果表明:(i)在该体系中,六钼酸盐簇的桥连氧配体比端氧配体更倾向于形成氢键受体;(ii)具有氢键供体和受体的小分子溶剂,如水、i-PrOH 和 EtOH,通常在其超分子组装中充当氢键桥;(iii)氢键除了对细胞包装外,对阴离子构象也有重要影响;(iv)化合物 1-7 的氢键超分子组装由于接枝有机配体、取代数和结晶溶剂分子的改变,从二聚体(3)、一维无限单链(4)、一维无限双链(2)和二维网络(1、5、6 和 7)呈现出有趣的变化。为了探索它们在电导率方面的潜在应用,我们通过它们的固态反射光谱确定了化合物 1-7 的光学带隙。我们的研究不仅系统地调查了远程羟基金属有机亚胺衍生的六钼酸盐的氢键相互作用和超分子组装,还为进一步修饰提供了一些可用的前体,包括酯化。