Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
Int J Food Microbiol. 2009 Nov 15;135(3):216-22. doi: 10.1016/j.ijfoodmicro.2009.07.035. Epub 2009 Aug 5.
Sourdough lactic acid bacteria (LAB) need to be adapted to a highly acidic and, therefore, challenging environment. Different mechanisms are employed to enhance competitiveness, among which conversion of arginine into ornithine through the arginine deiminase (ADI) pathway is an important one. A combined molecular and kinetic approach of the ADI pathway in Lactobacillus fermentum IMDO 130101, a highly competitive sourdough LAB strain, identified mechanisms with advantageous technological effects and quantified the impact of these effects. First, molecular analysis of the arcBCAD operon of 4.8 kb revealed the genes encoding the enzymes ornithine transcarbamoylase, carbamate kinase, arginine deiminase, and an arginine/ornithine (A/O) antiporter, respectively, with an additional A/O antiporter 702.5 kb downstream of the ADI operon. The latter could play a role in citrulline transport. Second, pH-controlled batch fermentations were carried out, generating data for the development of a mathematical model to describe the temporal evolution of the three amino acids involved in the ADI pathway (arginine, citrulline, and ornithine) as a result of the activity of these enzymes and transporter(s). Free arginine in the medium was converted completely into a mixture of citrulline and ornithine under all conditions tested. However, the ratio between these end-products and the pattern of their formation showed variation as a function of environmental pH. Under optimal pH conditions for growth, citrulline release and some further conversion into ornithine was observed. When growing under sub-optimal pH conditions, ornithine was the main product of the ADI pathway. These kinetic data suggest a role in adaptation of L. fermentum IMDO 130101 to growth under sub-optimal conditions.
酸面团乳酸菌 (LAB) 需要适应高度酸性的环境,因此具有挑战性。为了提高竞争力,它们采用了不同的机制,其中通过精氨酸脱亚氨酶 (ADI) 途径将精氨酸转化为鸟氨酸是一种重要的机制。通过对高度竞争的酸面团乳酸菌 L. fermentum IMDO 130101 中 ADI 途径的分子和动力学综合分析,确定了具有有利技术效果的机制,并量化了这些效果的影响。首先,对 4.8 kb 的 arcBCAD 操纵子进行分子分析,分别鉴定出编码鸟氨酸转氨甲酰酶、氨基甲酰激酶、精氨酸脱亚氨酶和精氨酸/鸟氨酸 (A/O) 反向转运体的基因,在 ADI 操纵子下游 702.5 kb 处还有一个额外的 A/O 反向转运体。后者可能在瓜氨酸转运中发挥作用。其次,进行了 pH 控制的分批发酵,生成的数据用于开发一个数学模型,以描述 ADI 途径中涉及的三种氨基酸(精氨酸、瓜氨酸和鸟氨酸)的时间演变,这是由于这些酶和转运体的活性所致。在所有测试条件下,培养基中的游离精氨酸都完全转化为瓜氨酸和鸟氨酸的混合物。然而,这些终产物之间的比例及其形成模式因环境 pH 值的变化而变化。在最佳生长 pH 条件下,观察到瓜氨酸的释放和一些进一步转化为鸟氨酸。在亚最佳 pH 条件下生长时,鸟氨酸是 ADI 途径的主要产物。这些动力学数据表明,L. fermentum IMDO 130101 在适应亚最佳条件下生长中发挥了作用。