Chotechuang Nattida, Azzout-Marniche Dalila, Bos Cécile, Chaumontet Catherine, Gausserès Nicolas, Steiler Tatiana, Gaudichon Claire, Tomé Daniel
AgroParisTech, Centre de Recherche en Nutrition Humaine-Ile de France (CRNH-IdF), UMR914, Nutrition Physiology and Ingestive Behavior, Paris, France.
Am J Physiol Endocrinol Metab. 2009 Dec;297(6):E1313-23. doi: 10.1152/ajpendo.91000.2008. Epub 2009 Sep 8.
Three transduction pathways are involved in amino acid (AA) sensing in liver: mammalian target of rapamycin (mTOR), AMP-activated protein kinase (AMPK), and general control nondepressible kinase 2 (GCN2). However, no study has investigated the involvement of these signaling pathways in hepatic AA sensing. To address the question of liver AA sensing and signaling in response to a high-protein (HP) dietary supply, we investigated the changes in the phosphorylation state of hepatic mTOR (p-mTOR), AMPKalpha (p-AMPKalpha), and GCN2 (p-GCN2) by Western blotting. In rats fed a HP diet for 14 days, the hepatic p-AMPKalpha and p-GCN2 were lower (P < 0.001), and those of both the p-mTOR and eukaryotic initiation factor 4E-binding protein-1 phosphorylation (p-4E-BP1) were higher (P < 0.01) compared with rats receiving a normal protein (NP) diet. In hepatocytes in primary culture, high AA concentration decreased AMPKalpha phosphorylation whether insulin was present or not (P < 0.01). Either AAs or insulin can stimulate p-mTOR, but this is not sufficient for 4E-BP1 phosphorylation that requires both (P < 0.01). As expected, branched-chain AAs (BCAA) or leucine stimulated the phosphorylation of mTOR, but both insulin and BCAA or leucine are required for 4E-BP1 phosphorylation. GCN2 phosphorylation was reduced by both AAs and insulin(P < 0.01), suggesting for the first time that the translation inhibitor GCN2 senses not only the AA deficiency but also the AA increase in the liver. The present findings demonstrate that AAs and insulin exert a coordinated action on translation and involved mTOR, AMPK, and GCN2 transduction pathways.
肝脏中氨基酸(AA)感知涉及三种转导途径:雷帕霉素靶蛋白(mTOR)、AMP激活的蛋白激酶(AMPK)和一般控制非抑制性激酶2(GCN2)。然而,尚无研究调查这些信号通路在肝脏AA感知中的作用。为了解决肝脏对高蛋白(HP)饮食供应的AA感知和信号传导问题,我们通过蛋白质免疫印迹法研究了肝脏mTOR(p-mTOR)、AMPKα(p-AMPKα)和GCN2(p-GCN2)磷酸化状态的变化。与接受正常蛋白质(NP)饮食的大鼠相比,喂食HP饮食14天的大鼠肝脏p-AMPKα和p-GCN2较低(P<0.001),而p-mTOR和真核起始因子4E结合蛋白1磷酸化(p-4E-BP1)均较高(P<0.01)。在原代培养的肝细胞中,无论是否存在胰岛素,高AA浓度都会降低AMPKα磷酸化(P<0.01)。氨基酸或胰岛素均可刺激p-mTOR,但这不足以使4E-BP1磷酸化,两者均需要才能使4E-BP1磷酸化(P<0.01)。正如预期的那样,支链氨基酸(BCAA)或亮氨酸可刺激mTOR磷酸化,但4E-BP1磷酸化需要胰岛素和BCAA或亮氨酸两者。氨基酸和胰岛素均可降低GCN2磷酸化(P<0.01),这首次表明翻译抑制剂GCN2不仅能感知肝脏中的氨基酸缺乏,还能感知氨基酸增加。目前的研究结果表明,氨基酸和胰岛素在翻译过程中发挥协同作用,并涉及mTOR、AMPK和GCN2转导途径。