Centre d'Elaboration des Materiaux et d'Etudes Structurales CEMES-CNRS, and Université de Toulouse, Toulouse, France.
Nano Lett. 2009 Nov;9(11):3732-8. doi: 10.1021/nl901918a.
We investigate the acousto-plasmonic dynamics of metallic nano-objects by means of resonant Raman scattering and time-resolved femtosecond transient absorption. We observe an unexpectedly strong acoustic vibration band in the Raman scattering of silver nanocolumns, usually not found in isolated nano-objects. The frequency and the polarization of this unexpected Raman band allow us to assign it to breathing-like acoustic vibration modes. On the basis of full electromagnetic near-field calculations coupled to the elasticity theory, we introduce a new concept of "acousto-plasmonic hot spots" which arise here because of the indented shape of the nanocolumns. These hot spots combine both highly localized surface plasmons and strong shape deformation by the acoustic vibrations at specific sites of the nano-objects. We show that the coupling between breathing-like acoustic vibrations and surface plasmons at the "acousto-plasmonic hot spots" is strongly enhanced, turning almost silent vibration modes into efficient Raman scatterers.
我们通过共振拉曼散射和时间分辨飞秒瞬态吸收研究了金属纳米物体的声等离子体动力学。我们观察到银纳米柱的拉曼散射中出现了一个出乎意料的强声学振动带,通常在孤立的纳米物体中不会发现。这个意外的拉曼带的频率和偏振允许我们将其分配到呼吸样的声学振动模式。基于与弹性理论耦合的全电磁近场计算,我们引入了一个新概念,即“声等离子体热点”,因为纳米柱的凹陷形状而在这里出现。这些热点结合了高度局域的表面等离子体和由纳米物体特定位置的声学振动引起的强烈形状变形。我们表明,在“声等离子体热点”处,呼吸样的声学振动与表面等离子体之间的耦合得到了强烈增强,使得几乎无声的振动模式变成了有效的拉曼散射体。