Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
DNA Res. 2009 Oct;16(5):261-73. doi: 10.1093/dnares/dsp014. Epub 2009 Sep 9.
We present CisFinder software, which generates a comprehensive list of motifs enriched in a set of DNA sequences and describes them with position frequency matrices (PFMs). A new algorithm was designed to estimate PFMs directly from counts of n-mer words with and without gaps; then PFMs are extended over gaps and flanking regions and clustered to generate non-redundant sets of motifs. The algorithm successfully identified binding motifs for 12 transcription factors (TFs) in embryonic stem cells based on published chromatin immunoprecipitation sequencing data. Furthermore, CisFinder successfully identified alternative binding motifs of TFs (e.g. POU5F1, ESRRB, and CTCF) and motifs for known and unknown co-factors of genes associated with the pluripotent state of ES cells. CisFinder also showed robust performance in the identification of motifs that were only slightly enriched in a set of DNA sequences.
我们介绍 CisFinder 软件,它可以生成一组 DNA 序列中富集的基序的综合列表,并使用位置频率矩阵(PFM)对其进行描述。我们设计了一种新算法,用于直接从带和不带空位的 n -mer 单词的计数中估计 PFM;然后将 PFM 扩展到空位和侧翼区域,并进行聚类以生成非冗余的基序集。该算法成功地根据已发表的染色质免疫沉淀测序数据,为胚胎干细胞中的 12 个转录因子(TF)识别了结合基序。此外,CisFinder 还成功地识别了 TF 的替代结合基序(例如 POUSF1、ESRRB 和 CTCF)以及与 ES 细胞多能状态相关的基因的已知和未知共同因子的基序。CisFinder 在识别仅在一组 DNA 序列中略有富集的基序方面也表现出稳健的性能。