Department für Physik and Center for NanoSciences (CeNS), Ludwig-Maximilians Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany.
Chemphyschem. 2009 Nov 9;10(16):2884-90. doi: 10.1002/cphc.200900555.
Intracellular transport, a complex interplay of diverse processes, is fundamental for the development, function and survival of cells. Passive diffusion and active transport phases alternate in living cells, with active phases arising from molecular motors, such as kinesin or dynein, pulling cargoes along microtubules. A better understanding of stochasic mechanisms involved in motor-microtubule interactions and in diffusion processes, which enable efficient active transport over long distances in motor neurons, requires a better link between theoretical models and live-cell experiments. Herein, we establish one-dimensional (1D) intracellular transport geometries, suitable for comparing experimental findings with recent theoretical 1D model predictions, by guiding axonal outgrowth of pheochromocytoma (PC12) cells along predefined chemical surface structures with a strip width of 2 microm, fabricated by means of microscale plasma-initiated patterning (microPIP method). Quantification of the intracellular transport of quantum dots (QDs) in straight axons, which exhibit almost parallel microtubules, is obtained by our recently developed algorithm based on a time-resolved mean-square displacement (MSD) analysis. Such a thorough dissection of experimental data will be useful for validation and clarification of current theoretical transport models.
细胞内运输是一个复杂的相互作用过程,对于细胞的发育、功能和生存至关重要。在活细胞中,被动扩散和主动运输阶段交替出现,主动运输阶段是由分子马达(如驱动蛋白或动力蛋白)驱动的,这些马达沿着微管拉动货物。为了更好地理解分子马达与微管相互作用以及扩散过程中的随机机制,这些机制使得在运动神经元中能够进行长距离的有效主动运输,需要在理论模型和活细胞实验之间建立更好的联系。在这里,我们通过微尺度等离子体引发图案化(microPIP 方法),沿着具有 2 微米宽度的预定化学表面结构引导嗜铬细胞瘤(PC12)细胞的轴突向外生长,建立了一维(1D)细胞内运输几何结构,从而可以将实验结果与最近的一维理论模型预测进行比较。通过我们最近开发的基于时间分辨均方根位移(MSD)分析的算法,对直轴突中量子点(QDs)的细胞内运输进行了定量分析,这些直轴突中的微管几乎是平行的。对实验数据的这种详细剖析将有助于验证和澄清当前的理论运输模型。