Suppr超能文献

一种能沿着碳纳米管运送纳米粒子的合成 DNA 马达。

A synthetic DNA motor that transports nanoparticles along carbon nanotubes.

机构信息

School of Mechanical Engineering, Bindley Bioscience Center, Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA.

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.

出版信息

Nat Nanotechnol. 2014 Jan;9(1):39-43. doi: 10.1038/nnano.2013.257. Epub 2013 Dec 8.

Abstract

Intracellular protein motors have evolved to perform specific tasks critical to the function of cells such as intracellular trafficking and cell division. Kinesin and dynein motors, for example, transport cargoes in living cells by walking along microtubules powered by adenosine triphosphate hydrolysis. These motors can make discrete 8 nm centre-of-mass steps and can travel over 1 µm by changing their conformations during the course of adenosine triphosphate binding, hydrolysis and product release. Inspired by such biological machines, synthetic analogues have been developed including self-assembled DNA walkers that can make stepwise movements on RNA/DNA substrates or can function as programmable assembly lines. Here, we show that motors based on RNA-cleaving DNA enzymes can transport nanoparticle cargoes-CdS nanocrystals in this case-along single-walled carbon nanotubes. Our motors extract chemical energy from RNA molecules decorated on the nanotubes and use that energy to fuel autonomous, processive walking through a series of conformational changes along the one-dimensional track. The walking is controllable and adapts to changes in the local environment, which allows us to remotely direct 'go' and 'stop' actions. The translocation of individual motors can be visualized in real time using the visible fluorescence of the cargo nanoparticle and the near-infared emission of the carbon-nanotube track. We observed unidirectional movements of the molecular motors over 3 µm with a translocation velocity on the order of 1 nm min(-1) under our experimental conditions.

摘要

细胞内蛋白质马达已经进化到可以执行对细胞功能至关重要的特定任务,例如细胞内运输和细胞分裂。例如,驱动蛋白和动力蛋白马达通过沿着微管行走来运输活细胞中的货物,这种运动是由三磷酸腺苷水解提供动力的。这些马达可以进行离散的 8nm 质心步长运动,并通过在三磷酸腺苷结合、水解和产物释放过程中改变其构象,在超过 1μm 的距离内进行运动。受此类生物机器的启发,已经开发出了合成类似物,包括可以在 RNA/DNA 底物上进行逐步运动的自组装 DNA 行走器,或者可以作为可编程装配线发挥作用的合成类似物。在这里,我们展示了基于切割 RNA 的 DNA 酶的马达可以沿着单壁碳纳米管运输纳米颗粒货物——在这种情况下是 CdS 纳米晶体。我们的马达从修饰在纳米管上的 RNA 分子中提取化学能量,并利用这种能量来驱动自主、连续的运动,通过沿着一维轨道的一系列构象变化来实现。这种运动是可控的,可以适应局部环境的变化,这使得我们可以远程指挥“前进”和“停止”的动作。使用货物纳米颗粒的可见荧光和碳纳米管轨道的近红外发射,可以实时观察单个马达的转位。在我们的实验条件下,观察到分子马达的单向运动超过 3μm,其转位速度约为 1nm·min(-1)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验