Suppr超能文献

迈向实用的微笑检测。

Toward practical smile detection.

作者信息

Whitehill Jacob, Littlewort Gwen, Fasel Ian, Bartlett Marian, Movellan Javier

机构信息

Machine Perception Laboratory, University of California, San Diego, La Jolla, CA 92093-0440, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2009 Nov;31(11):2106-11. doi: 10.1109/TPAMI.2009.42.

Abstract

Machine learning approaches have produced some of the highest reported performances for facial expression recognition. However, to date, nearly all automatic facial expression recognition research has focused on optimizing performance on a few databases that were collected under controlled lighting conditions on a relatively small number of subjects. This paper explores whether current machine learning methods can be used to develop an expression recognition system that operates reliably in more realistic conditions. We explore the necessary characteristics of the training data set, image registration, feature representation, and machine learning algorithms. A new database, GENKI, is presented which contains pictures, photographed by the subjects themselves, from thousands of different people in many different real-world imaging conditions. Results suggest that human-level expression recognition accuracy in real-life illumination conditions is achievable with machine learning technology. However, the data sets currently used in the automatic expression recognition literature to evaluate progress may be overly constrained and could potentially lead research into locally optimal algorithmic solutions.

摘要

机器学习方法在面部表情识别方面取得了一些报道中最高的性能表现。然而,迄今为止,几乎所有的自动面部表情识别研究都集中在优化少数数据库上的性能,这些数据库是在受控光照条件下针对相对较少数量的受试者收集的。本文探讨了当前的机器学习方法是否可用于开发一个能在更现实条件下可靠运行的表情识别系统。我们探究了训练数据集、图像配准、特征表示和机器学习算法的必要特性。提出了一个新的数据库GENKI,它包含了由受试者自己拍摄的、来自数千个不同人的、在许多不同现实世界成像条件下的图片。结果表明,利用机器学习技术在现实生活光照条件下实现人类水平的表情识别准确率是可行的。然而,目前自动表情识别文献中用于评估进展的数据集可能受到过度限制,并且可能会使研究陷入局部最优的算法解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验