Suppr超能文献

将多个时间序列注释建模为真实情况的噪声失真:一种期望最大化方法。

Modeling multiple time series annotations as noisy distortions of the ground truth: An Expectation-Maximization approach.

作者信息

Gupta Rahul, Audhkhasi Kartik, Jacokes Zach, Rozga Agata, Narayanan Shrikanth

出版信息

IEEE Trans Affect Comput. 2018 Jan-Mar;9(1):76-89. doi: 10.1109/TAFFC.2016.2592918. Epub 2016 Jul 19.

Abstract

Studies of time-continuous human behavioral phenomena often rely on ratings from multiple annotators. Since the ground truth of the target construct is often latent, the standard practice is to use ad-hoc metrics (such as averaging annotator ratings). Despite being easy to compute, such metrics may not provide accurate representations of the underlying construct. In this paper, we present a novel method for modeling multiple time series annotations over a continuous variable that computes the ground truth by modeling annotator specific distortions. We condition the ground truth on a set of features extracted from the data and further assume that the annotators provide their ratings as modification of the ground truth, with each annotator having specific distortion tendencies. We train the model using an Expectation-Maximization based algorithm and evaluate it on a study involving natural interaction between a child and a psychologist, to predict confidence ratings of the children's smiles. We compare and analyze the model against two baselines where: (i) the ground truth in considered to be framewise mean of ratings from various annotators and, (ii) each annotator is assumed to bear a distinct time delay in annotation and their annotations are aligned before computing the framewise mean.

摘要

对时间连续的人类行为现象的研究通常依赖于多个注释者的评分。由于目标结构的真实情况往往是潜在的,标准做法是使用临时指标(如对注释者评分求平均值)。尽管这些指标易于计算,但可能无法准确反映潜在结构。在本文中,我们提出了一种对连续变量上的多个时间序列注释进行建模的新方法,该方法通过对注释者特定的偏差进行建模来计算真实情况。我们将真实情况基于从数据中提取的一组特征,并且进一步假设注释者将他们的评分作为对真实情况的修改,每个注释者都有特定的偏差倾向。我们使用基于期望最大化的算法训练模型,并在一项涉及儿童与心理学家自然互动的研究中对其进行评估,以预测儿童微笑的置信度评分。我们将该模型与两个基线进行比较和分析,其中:(i)真实情况被视为来自不同注释者评分的逐帧平均值,以及(ii)假设每个注释者在注释时有不同的时间延迟,并且在计算逐帧平均值之前对他们的注释进行对齐。

相似文献

3
Assessing Inter-Annotator Agreement for Medical Image Segmentation.评估医学图像分割中注释者之间的一致性。
IEEE Access. 2023;11:21300-21312. doi: 10.1109/access.2023.3249759. Epub 2023 Feb 27.
4
Modeling Sequential Annotations for Sequence Labeling With Crowds.基于众包的序列标注的序贯标注建模。
IEEE Trans Cybern. 2023 Apr;53(4):2335-2345. doi: 10.1109/TCYB.2021.3117700. Epub 2023 Mar 16.
9
Transferring Annotator- and Instance-Dependent Transition Matrix for Learning From Crowds.用于众包学习的转移依赖于注释器和实例的转移矩阵
IEEE Trans Pattern Anal Mach Intell. 2024 Nov;46(11):7377-7391. doi: 10.1109/TPAMI.2024.3388209. Epub 2024 Oct 3.
10
The gene normalization task in BioCreative III.BioCreative III 中的基因标准化任务。
BMC Bioinformatics. 2011 Oct 3;12 Suppl 8(Suppl 8):S2. doi: 10.1186/1471-2105-12-S8-S2.

本文引用的文献

3
L1 -norm low-rank matrix factorization by variational Bayesian method.基于变分贝叶斯方法的 L1-范数低秩矩阵分解。
IEEE Trans Neural Netw Learn Syst. 2015 Apr;26(4):825-39. doi: 10.1109/TNNLS.2014.2387376. Epub 2015 Jan 15.
5
Toward practical smile detection.迈向实用的微笑检测。
IEEE Trans Pattern Anal Mach Intell. 2009 Nov;31(11):2106-11. doi: 10.1109/TPAMI.2009.42.
6
The interactive development of social smiling.社会微笑的互动发展。
Adv Child Dev Behav. 2007;35:327-66. doi: 10.1016/b978-0-12-009735-7.50014-1.
9
A unifying review of linear gaussian models.线性高斯模型的统一综述。
Neural Comput. 1999 Feb 15;11(2):305-45. doi: 10.1162/089976699300016674.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验