Teledyne Scientific Co. LLC, Thousand Oaks, CA 91360, USA.
J Theor Biol. 2010 Jan 7;262(1):58-72. doi: 10.1016/j.jtbi.2009.09.010. Epub 2009 Sep 16.
A multi-scale strategy is presented for simulating organogenesis that uses a single cell response function to define the behavior of individual cells in an organ-scale simulation of a large cell population. The response function summarizes detailed information about the behavior of individual cells in a sufficiently economical way that the organ-scale model can be commensurate with the entire organ. The first application demonstrates the effects of strain stimulus on the migration of ameloblasts during enamel formation. Ameloblasts are an attractive study case because mineralization preserves a complete record of their migratory paths. The response function in this case specifies the motions of cells responding to strain stimuli that propagate through the population. The strain stimuli are related to the curvature of the surface from which the ameloblasts migrate (the dentin-enamel junction or DEJ). A single unknown rate parameter is calibrated by an independent datum from the human tooth. With no remaining adjustable parameters, the theory correctly predicts aspects of the fracture-resistant, wavy microstructure of enamel in the human molar, including wavelength variations and the rate of wave amplitude damping. At a critical value of curvature of the DEJ, a transition in the ordering of cells occurs, from invariant order over the whole population to self-assembly of the population into groups or gangs. The prediction of an ordering transition and the predicted critical curvature are consistent with gnarled enamel in the cusps of the human molar. The calibration of the model using human data also predicts waves in the mouse incisor and an ordering transition at the chimpanzee cingulum. Widespread compressive strain is predicted late in the migration for both the human molar and mouse incisor, providing a possible signal for the termination of amelogenesis.
提出了一种多尺度策略来模拟器官发生,该策略使用单个细胞响应函数来定义大细胞群体器官尺度模拟中单个细胞的行为。响应函数以足够经济的方式总结了单个细胞行为的详细信息,使得器官尺度模型与整个器官相匹配。第一个应用演示了应变刺激对釉质形成过程中成釉细胞迁移的影响。成釉细胞是一个很有吸引力的研究案例,因为矿化保存了它们迁移路径的完整记录。在这种情况下,响应函数指定了对通过群体传播的应变刺激做出反应的细胞的运动。应变刺激与成釉细胞迁移的表面曲率(牙本质-釉质交界处或 DEJ)有关。通过来自人类牙齿的独立数据来校准单个未知的速率参数。没有剩余的可调参数,该理论正确预测了人类磨牙中具有抗断裂性的、波浪状的釉质微观结构的各个方面,包括波长变化和波幅衰减率。在 DEJ 曲率的临界值处,细胞的有序性发生转变,从整个群体的不变有序转变为群体的自组装成组或帮派。有序性转变的预测和预测的临界曲率与人类磨牙牙尖的扭曲釉质一致。使用人类数据对模型进行校准还预测了小鼠切牙中的波和黑猩猩齿带的有序性转变。在人类磨牙和小鼠切牙的迁移后期,预测到广泛的压缩应变,为釉质发生的终止提供了可能的信号。