Bhattacharya Pinaki, Viceconti Marco
Department of Mechanical Engineering and INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK.
Wiley Interdiscip Rev Syst Biol Med. 2017 May;9(3). doi: 10.1002/wsbm.1375. Epub 2017 Jan 19.
More and more frequently, computational biomechanics deals with problems where the portion of physical reality to be modeled spans over such a large range of spatial and temporal dimensions, that it is impossible to represent it as a single space-time continuum. We are forced to consider multiple space-time continua, each representing the phenomenon of interest at a characteristic space-time scale. Multiscale models describe a complex process across multiple scales, and account for how quantities transform as we move from one scale to another. This review offers a set of definitions for this emerging field, and provides a brief summary of the most recent developments on multiscale modeling in biomechanics. Of all possible perspectives, we chose that of the modeling intent, which vastly affect the nature and the structure of each research activity. To the purpose we organized all papers reviewed in three categories: 'causal confirmation,' where multiscale models are used as materializations of the causation theories; 'predictive accuracy,' where multiscale modeling is aimed to improve the predictive accuracy; and 'determination of effect,' where multiscale modeling is used to model how a change at one scale manifests in an effect at another radically different space-time scale. Consistent with how the volume of computational biomechanics research is distributed across application targets, we extensively reviewed papers targeting the musculoskeletal and the cardiovascular systems, and covered only a few exemplary papers targeting other organ systems. The review shows a research subdomain still in its infancy, where causal confirmation papers remain the most common. WIREs Syst Biol Med 2017, 9:e1375. doi: 10.1002/wsbm.1375 For further resources related to this article, please visit the WIREs website.
待建模的物理现实部分跨越了如此大的时空维度范围,以至于不可能将其表示为单个时空连续体。我们不得不考虑多个时空连续体,每个连续体在特定的时空尺度上代表感兴趣的现象。多尺度模型描述了跨越多个尺度的复杂过程,并说明了当我们从一个尺度转换到另一个尺度时,量是如何变化的。本综述为这个新兴领域提供了一组定义,并简要总结了生物力学中多尺度建模的最新进展。在所有可能的视角中,我们选择了建模意图的视角,它极大地影响了每项研究活动的性质和结构。为此,我们将所审查的所有论文分为三类:“因果关系确认”,其中多尺度模型被用作因果关系理论的具体体现;“预测准确性”,其中多尺度建模旨在提高预测准确性;以及“效应确定”,其中多尺度建模用于模拟一个尺度上的变化如何在另一个完全不同的时空尺度上表现为一种效应。与计算生物力学研究的数量在不同应用目标中的分布情况一致,我们广泛审查了针对肌肉骨骼系统和心血管系统的论文,只涵盖了少数针对其他器官系统的示例论文。该综述表明,这个研究子领域仍处于起步阶段,其中因果关系确认论文仍然最为常见。《WIREs系统生物学与医学》2017年,9:e1375。doi:10.1002/wsbm.1375 有关本文的更多资源,请访问WIREs网站。