Suppr超能文献

牙齿如何形成条纹:应变引发的运动模式形成条纹。

How the tooth got its stripes: patterning via strain-cued motility.

机构信息

Teledyne Scientific & Imaging Co. LLC, Thousand Oaks, CA 91360, USA.

出版信息

J R Soc Interface. 2013 Apr 24;10(84):20130266. doi: 10.1098/rsif.2013.0266. Print 2013 Jul 6.

Abstract

We hypothesize that a population of migrating cells can form patterns when changes in local strains owing to relative cell motions induce changes in cell motility. That the mechanism originates in competing rates of motion distinguishes it from mechanisms involving strain energy gradients, e.g. those generated by surface energy effects or eigenstrains among cells, and diffusion-reaction mechanisms involving chemical signalling factors. The theory is tested by its ability to reproduce the morphological characteristics of enamel in the mouse incisor. Dental enamel is formed during amelogenesis by a population of ameloblasts that move about laterally within an expanding curved sheet, subject to continuously evolving spatial and temporal gradients in strain. Discrete-cell simulations of this process compute the changing strain environment of all cells and predict cell trajectories by invoking simple rules for the motion of an individual cell in response to its strain environment. The rules balance a tendency for cells to enhance relative sliding motion against a tendency to maintain uniform cell-cell separation. The simulations account for observed waviness in the enamel microstructure, the speed and shape of the 'commencement front' that separates domains of migrating secretory-stage ameloblasts from those that are not yet migrating, the initiation and sustainment of layered, fracture-resistant decussation patterns (cross-plied microstructure) and the transition from decussating inner enamel to non-decussating outer enamel. All these characteristics can be correctly predicted with the use of a single scalar adjustable parameter.

摘要

我们假设,当相对细胞运动引起的局部应变变化诱导细胞运动性变化时,迁移细胞群可以形成模式。该机制源于运动速率的竞争,这使其有别于涉及应变能梯度的机制,例如由表面能效应或细胞内本征应变引起的机制,以及涉及化学信号因子的扩散-反应机制。该理论通过其在重现小鼠切牙釉质形态特征方面的能力得到检验。在釉质发生期间,釉质由一群釉原细胞形成,这些细胞在不断演变的空间和时间应变梯度下在扩张的曲面上侧向移动。对该过程的离散细胞模拟计算了所有细胞的不断变化的应变环境,并通过调用单个细胞在其应变环境下运动的简单规则来预测细胞轨迹。这些规则平衡了细胞增强相对滑动运动的趋势与保持均匀细胞间分离的趋势。这些模拟解释了釉质微观结构中的波纹、将正在迁移的分泌期釉原细胞与尚未迁移的细胞分隔开来的“起始前沿”的速度和形状、分层的、抗断裂的交错模式(交叉层微观结构)的开始和维持以及从交错的内釉质到非交错的外釉质的转变。所有这些特征都可以通过使用单个标量可调参数正确预测。

相似文献

1
How the tooth got its stripes: patterning via strain-cued motility.
J R Soc Interface. 2013 Apr 24;10(84):20130266. doi: 10.1098/rsif.2013.0266. Print 2013 Jul 6.
4
A method of calculating the speed of movement of ameloblasts during rat incisor amelogenesis.
Arch Oral Biol. 1979;24(4):299-306. doi: 10.1016/0003-9969(79)90092-x.
6
Cells as strain-cued automata.
J Mech Phys Solids. 2016 Feb;87:177-226. doi: 10.1016/j.jmps.2015.11.002. Epub 2015 Dec 2.
7
Matrix metalloproteinase 20 promotes a smooth enamel surface, a strong dentino-enamel junction, and a decussating enamel rod pattern.
Eur J Oral Sci. 2011 Dec;119 Suppl 1(Suppl 1):199-205. doi: 10.1111/j.1600-0722.2011.00864.x.
8
The anion exchanger Ae2 is required for enamel maturation in mouse teeth.
Matrix Biol. 2008 Mar;27(2):119-27. doi: 10.1016/j.matbio.2007.09.006. Epub 2007 Oct 11.
9
MMP20 modulates cadherin expression in ameloblasts as enamel develops.
J Dent Res. 2013 Dec;92(12):1123-8. doi: 10.1177/0022034513506581. Epub 2013 Sep 25.
10
Cellular and chemical events during enamel maturation.
Crit Rev Oral Biol Med. 1998;9(2):128-61. doi: 10.1177/10454411980090020101.

引用本文的文献

1
Challenges of Studying Amelogenesis in Gene-Targeted Mouse Models.
Int J Mol Sci. 2025 May 20;26(10):4905. doi: 10.3390/ijms26104905.
2
Loss of biological control of enamel mineralization in amelogenin-phosphorylation-deficient mice.
J Struct Biol. 2022 Jun;214(2):107844. doi: 10.1016/j.jsb.2022.107844. Epub 2022 Feb 25.
4
Cells as strain-cued automata.
J Mech Phys Solids. 2016 Feb;87:177-226. doi: 10.1016/j.jmps.2015.11.002. Epub 2015 Dec 2.
7
Heterogeneity and Developmental Connections between Cell Types Inhabiting Teeth.
Front Physiol. 2017 Jun 7;8:376. doi: 10.3389/fphys.2017.00376. eCollection 2017.

本文引用的文献

1
Forging patterns and making waves from biology to geology: a commentary on Turing (1952) 'The chemical basis of morphogenesis'.
Philos Trans R Soc Lond B Biol Sci. 2015 Apr 19;370(1666). doi: 10.1098/rstb.2014.0218.
2
The organization of the osteocyte network mirrors the extracellular matrix orientation in bone.
J Struct Biol. 2011 Feb;173(2):303-11. doi: 10.1016/j.jsb.2010.11.014. Epub 2010 Nov 23.
3
A strain-cue hypothesis for biological network formation.
J R Soc Interface. 2011 Mar 6;8(56):377-94. doi: 10.1098/rsif.2010.0262. Epub 2010 Jul 29.
5
Spatial patterning of cell proliferation and differentiation depends on mechanical stress magnitude.
J Biomech. 2009 Aug 7;42(11):1622-7. doi: 10.1016/j.jbiomech.2009.04.033. Epub 2009 May 30.
6
Developmental patterning by mechanical signals in Arabidopsis.
Science. 2008 Dec 12;322(5908):1650-5. doi: 10.1126/science.1165594.
7
Physical modeling of cell geometric order in an epithelial tissue.
Proc Natl Acad Sci U S A. 2008 Jan 22;105(3):907-11. doi: 10.1073/pnas.0711077105. Epub 2008 Jan 11.
8
Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis.
Nat Rev Mol Cell Biol. 2007 Aug;8(8):633-44. doi: 10.1038/nrm2222.
9
Cooperative effects of Rho and mechanical stretch on stress fiber organization.
Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15895-900. doi: 10.1073/pnas.0506041102. Epub 2005 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验