Samson Y, Wu J J, Friedman A H, Davis J N
Neurology Research Laboratory Durham V.A. Medical Center, North Carolina 27705.
J Comp Neurol. 1990 Aug 8;298(2):250-63. doi: 10.1002/cne.902980209.
We studied the immunocytochemical distribution of catecholaminergic fibers in the hippocampal formation from two cynomolgus monkeys by using phenylethanolamine-N-methyltransferase, dopamine-beta-hydroxylase, and tyrosine-hydroxylase antibodies. There were no phenylethanolamine-N-methyltransferase immunoreactive fibers suggesting the lack of epinephrine containing fibers. In order to compare the distributions of tyrosine-hydroxylase and dopamine-beta-hydroxylase immunoreactive fibers, we counted fibers in four hippocampal regions, the dentate gyrus, CA3, CA1, and the subiculum at three different rostrocaudal levels. The distributions of dopamine-beta-hydroxylase and tyrosine-hydroxylase immunoreactive fibers were overlapping but clearly different, suggesting that the hippocampus receives both noradrenergic and dopaminergic inputs in primates. Dopamine-beta-hydroxylase-immunoreactive fibers were present in moderate density and roughly evenly distributed throughout the hippocampus. Tyrosine-hydroxylase immunoreactive fibers were found in high density in the dentate gyrus, in the stratum lacunosum-moleculare, and in the molecular layer of the subiculum. There were only minor side-side and rostrocaudal differences in the distribution of tyrosine-hydroxylase and dopamine-beta-hydroxylase immunoreactive fibers. The identification of a putative dopaminergic projection to primate hippocampus, which is more dense and widely distributed than in the rodent, parallels similar increases in dopaminergic projections reported for primate cerebral neocortex.